These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

361 related articles for article (PubMed ID: 29704793)

  • 41. Forward collision warning based on a driver model to increase drivers' acceptance.
    Puente Guillen P; Gohl I
    Traffic Inj Prev; 2019; 20(sup1):S21-S26. PubMed ID: 31381428
    [No Abstract]   [Full Text] [Related]  

  • 42. Design and evaluation of a prototype rear obstacle detection and driver warning system.
    Llaneras RE; Green CA; Kiefer RJ; Chundrlik WJ; Altan OD; Singer JP
    Hum Factors; 2005; 47(1):199-215. PubMed ID: 15960097
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Impact of heterogeneity of car-following behavior on rear-end crash risk.
    Zhang J; Wang Y; Lu G
    Accid Anal Prev; 2019 Apr; 125():275-289. PubMed ID: 30802778
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effects of blind spot monitoring systems on police-reported lane-change crashes.
    Cicchino JB
    Traffic Inj Prev; 2018; 19(6):615-622. PubMed ID: 29927678
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A simulator study assessing the effectiveness of training and warning systems on drivers' response performance to vehicle cyberattacks.
    Wang M; Parker J; Zhang F; Roberts SC
    Accid Anal Prev; 2024 Aug; 203():107644. PubMed ID: 38788433
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A rear-end collision risk assessment model based on drivers' collision avoidance process under influences of cell phone use and gender-A driving simulator based study.
    Li X; Yan X; Wu J; Radwan E; Zhang Y
    Accid Anal Prev; 2016 Dec; 97():1-18. PubMed ID: 27565040
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Predicting driver reaction time and deceleration: Comparison of perception-reaction thresholds and evidence accumulation framework.
    Durrani U; Lee C; Shah D
    Accid Anal Prev; 2021 Jan; 149():105889. PubMed ID: 33248429
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Impact of in-vehicle navigation information on lane-change behavior in urban expressway diverge segments.
    Yun M; Zhao J; Zhao J; Weng X; Yang X
    Accid Anal Prev; 2017 Sep; 106():53-66. PubMed ID: 28577392
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Which accuracy levels of positioning technologies do drivers really need in connected vehicle settings for safety?
    Wu C; Zhang W; You X; Du N
    Accid Anal Prev; 2021 Jul; 157():106106. PubMed ID: 34016444
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Human performance models and rear-end collision avoidance algorithms.
    Brown TL; Lee JD; McGehee DV
    Hum Factors; 2001; 43(3):462-82. PubMed ID: 11866201
    [TBL] [Abstract][Full Text] [Related]  

  • 51. An entropy-based analysis of lane changing behavior: An interactive approach.
    Kosun C; Ozdemir S
    Traffic Inj Prev; 2017 May; 18(4):441-447. PubMed ID: 27603156
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Counterfactual simulations applied to SHRP2 crashes: The effect of driver behavior models on safety benefit estimations of intelligent safety systems.
    Bärgman J; Boda CN; Dozza M
    Accid Anal Prev; 2017 May; 102():165-180. PubMed ID: 28315616
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Design and evaluation of cooperative human-machine interface for changing lanes in conditional driving automation.
    Muslim H; Kiu Leung C; Itoh M
    Accid Anal Prev; 2022 Sep; 174():106719. PubMed ID: 35660872
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Detecting lane change maneuvers using SHRP2 naturalistic driving data: A comparative study machine learning techniques.
    Das A; Khan MN; Ahmed MM
    Accid Anal Prev; 2020 Jul; 142():105578. PubMed ID: 32408143
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Analysis of driver behavior at grade-separated intersections to support design.
    Liu Y; Kaber D; Cunningham C; Chase T; Pyo K
    Appl Ergon; 2024 Jul; 118():104287. PubMed ID: 38626670
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effects of intelligent advanced warnings on drivers negotiating the dilemma zone.
    Gugerty L; McIntyre SE; Link D; Zimmerman K; Tolani D; Huang P; Pokorny RA
    Hum Factors; 2014 Sep; 56(6):1021-35. PubMed ID: 25277014
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A novel collision warning system based on the visual road environment schema: An examination from vehicle and driver characteristics.
    Li Z; Yu B; Wang Y; Chen Y; Kong Y; Xu Y
    Accid Anal Prev; 2023 Sep; 190():107154. PubMed ID: 37343457
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A Novel Intelligent Approach to Lane-Change Behavior Prediction for Intelligent and Connected Vehicles.
    Du L; Chen W; Ji J; Pei Z; Tong B; Zheng H
    Comput Intell Neurosci; 2022; 2022():9516218. PubMed ID: 35082845
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Analysis and regulation of driving behavior in the entrance zone of freeway tunnels: Implementation of visual guidance systems in China.
    Bei R; Du Z; Huang T; Mei J; He S; Zhang X
    Accid Anal Prev; 2024 Jul; 202():107600. PubMed ID: 38663272
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A trial of retrofitted advisory collision avoidance technology in government fleet vehicles.
    Thompson JP; Mackenzie JRR; Dutschke JK; Baldock MRJ; Raftery SJ; Wall J
    Accid Anal Prev; 2018 Jun; 115():34-40. PubMed ID: 29544135
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.