These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 29704803)

  • 1. Identification of cis-regulatory elements by chromatin structure.
    Lu Z; Ricci WA; Schmitz RJ; Zhang X
    Curr Opin Plant Biol; 2018 Apr; 42():90-94. PubMed ID: 29704803
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The prevalence, evolution and chromatin signatures of plant regulatory elements.
    Lu Z; Marand AP; Ricci WA; Ethridge CL; Zhang X; Schmitz RJ
    Nat Plants; 2019 Dec; 5(12):1250-1259. PubMed ID: 31740772
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Open chromatin in plant genomes.
    Zhang W; Zhang T; Wu Y; Jiang J
    Cytogenet Genome Res; 2014; 143(1-3):18-27. PubMed ID: 24923879
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stable unmethylated DNA demarcates expressed genes and their cis-regulatory space in plant genomes.
    Crisp PA; Marand AP; Noshay JM; Zhou P; Lu Z; Schmitz RJ; Springer NM
    Proc Natl Acad Sci U S A; 2020 Sep; 117(38):23991-24000. PubMed ID: 32879011
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A cis-regulatory atlas in maize at single-cell resolution.
    Marand AP; Chen Z; Gallavotti A; Schmitz RJ
    Cell; 2021 May; 184(11):3041-3055.e21. PubMed ID: 33964211
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of novel regulatory modules in dicotyledonous plants using expression data and comparative genomics.
    Vandepoele K; Casneuf T; Van de Peer Y
    Genome Biol; 2006; 7(11):R103. PubMed ID: 17090307
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The 'dark matter' in the plant genomes: non-coding and unannotated DNA sequences associated with open chromatin.
    Jiang J
    Curr Opin Plant Biol; 2015 Apr; 24():17-23. PubMed ID: 25625239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A universal algorithm for genome-wide in silicio identification of biologically significant gene promoter putative cis-regulatory-elements; identification of new elements for reactive oxygen species and sucrose signaling in Arabidopsis.
    Geisler M; Kleczkowski LA; Karpinski S
    Plant J; 2006 Feb; 45(3):384-98. PubMed ID: 16412085
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards genome-wide prediction and characterization of enhancers in plants.
    Marand AP; Zhang T; Zhu B; Jiang J
    Biochim Biophys Acta Gene Regul Mech; 2017 Jan; 1860(1):131-139. PubMed ID: 27321818
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel pairwise comparison method for in silico discovery of statistically significant cis-regulatory elements in eukaryotic promoter regions: application to Arabidopsis.
    Shamloo-Dashtpagerdi R; Razi H; Aliakbari M; Lindlöf A; Ebrahimi M; Ebrahimie E
    J Theor Biol; 2015 Jan; 364():364-76. PubMed ID: 25303887
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolutionary insights into the organization of chromatin structure and landscape of transcriptional regulation in plants.
    Long Y; Wendel JF; Zhang X; Wang M
    Trends Plant Sci; 2024 Jun; 29(6):638-649. PubMed ID: 38061928
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cis-regulatory sequences in plants: Their importance, discovery, and future challenges.
    Schmitz RJ; Grotewold E; Stam M
    Plant Cell; 2022 Feb; 34(2):718-741. PubMed ID: 34918159
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decoding the plant genome: From epigenome to 3D organization.
    Ouyang W; Cao Z; Xiong D; Li G; Li X
    J Genet Genomics; 2020 Aug; 47(8):425-435. PubMed ID: 33023833
    [TBL] [Abstract][Full Text] [Related]  

  • 14. De novo prediction of cis-regulatory elements and modules through integrative analysis of a large number of ChIP datasets.
    Niu M; Tabari ES; Su Z
    BMC Genomics; 2014 Dec; 15():1047. PubMed ID: 25442502
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The regulatory code for transcriptional response diversity and its relation to genome structural properties in A. thaliana.
    Walther D; Brunnemann R; Selbig J
    PLoS Genet; 2007 Feb; 3(2):e11. PubMed ID: 17291162
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plant 3D genomics: the exploration and application of chromatin organization.
    Pei L; Li G; Lindsey K; Zhang X; Wang M
    New Phytol; 2021 Jun; 230(5):1772-1786. PubMed ID: 33560539
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring plant cis-regulatory elements at single-cell resolution: overcoming biological and computational challenges to advance plant research.
    Mendieta JP; Sangra A; Yan H; Minow MAA; Schmitz RJ
    Plant J; 2023 Sep; 115(6):1486-1499. PubMed ID: 37309871
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Progress on identification and analysis of DNase I hypersensitive sites in plant genomes].
    Zhang T; Yang ZJ
    Yi Chuan; 2013 Jul; 35(7):867-74. PubMed ID: 23853357
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Putting DNA methylation in context: from genomes to gene expression in plants.
    Niederhuth CE; Schmitz RJ
    Biochim Biophys Acta Gene Regul Mech; 2017 Jan; 1860(1):149-156. PubMed ID: 27590871
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cis-regulatory landscapes in development and evolution.
    Maeso I; Acemel RD; Gómez-Skarmeta JL
    Curr Opin Genet Dev; 2017 Apr; 43():17-22. PubMed ID: 27842294
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.