BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 29705102)

  • 1. Comparative analyses of flow and compaction properties of diverse mannitol and lactose grades.
    Paul S; Chang SY; Dun J; Sun WJ; Wang K; Tajarobi P; Boissier C; Sun CC
    Int J Pharm; 2018 Jul; 546(1-2):39-49. PubMed ID: 29705102
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tableting performance of various mannitol and lactose grades assessed by compaction simulation and chemometrical analysis.
    Paul S; Tajarobi P; Boissier C; Sun CC
    Int J Pharm; 2019 Jul; 566():24-31. PubMed ID: 31095984
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of Powder- and Tablet Properties of Different Direct Compaction Grades of Mannitol Using a Kohonen Self-organizing Map and a Lasso Regression Model.
    Kosugi A; Leong KH; Tsuji H; Hayashi Y; Kumada S; Okada K; Onuki Y
    J Pharm Sci; 2020 Aug; 109(8):2585-2593. PubMed ID: 32473211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Roller compaction, granulation and capsule product dissolution of drug formulations containing a lactose or mannitol filler, starch, and talc.
    Chang CK; Alvarez-Nunez FA; Rinella JV; Magnusson LE; Sueda K
    AAPS PharmSciTech; 2008; 9(2):597-604. PubMed ID: 18459052
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Powder flow in an automated uniaxial tester and an annular shear cell: a study of pharmaceutical excipients and analytical data comparison.
    Kuentz M; Schirg P
    Drug Dev Ind Pharm; 2013 Sep; 39(9):1476-83. PubMed ID: 23043592
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of Particle Surface Roughness on In-Die Flow and Tableting Behavior of Lactose.
    Tay JYS; Kok BWT; Liew CV; Heng PWS
    J Pharm Sci; 2019 Sep; 108(9):3011-3019. PubMed ID: 31054886
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of mannitol granules and powder: A comparative study using two flowability testers.
    Takeuchi Y; Tomita T; Kuroda J; Kageyu A; Yonekura C; Hiramura Y; Tahara K; Takeuchi H
    Int J Pharm; 2018 Aug; 547(1-2):106-113. PubMed ID: 29803796
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Roll compaction of mannitol: compactability study of crystalline and spray-dried grades.
    Wagner CM; Pein M; Breitkreutz J
    Int J Pharm; 2013 Sep; 453(2):416-22. PubMed ID: 23742975
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparative study of the influence of alpha-lactose monohydrate particle morphology on granule and tablet properties after roll compaction/dry granulation.
    Grote S; Kleinebudde P
    Pharm Dev Technol; 2019 Mar; 24(3):314-322. PubMed ID: 29757067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved tabletability after a polymorphic transition of delta-mannitol during twin screw granulation.
    Vanhoorne V; Bekaert B; Peeters E; De Beer T; Remon JP; Vervaet C
    Int J Pharm; 2016 Jun; 506(1-2):13-24. PubMed ID: 27094358
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insensitivity of compaction properties of brittle granules to size enlargement by roller compaction.
    Wu SJ; Sun C
    J Pharm Sci; 2007 May; 96(5):1445-50. PubMed ID: 17455348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multivariate analysis of relationships between material properties, process parameters and tablet tensile strength for alpha-lactose monohydrates.
    Haware RV; Tho I; Bauer-Brandl A
    Eur J Pharm Biopharm; 2009 Nov; 73(3):424-31. PubMed ID: 19698784
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing the impact of HPMC viscosity grade and proportion on the physical properties of co-freeze-dried mannitol-HPMC tableting excipients using multivariate analysis methods.
    Siow CRS; Tang DS; Heng PWS; Chan LW
    Int J Pharm; 2019 Feb; 556():246-262. PubMed ID: 30529666
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tablet mechanics depend on nano and micro scale adhesion, lubrication and structure.
    Badal Tejedor M; Nordgren N; Schuleit M; Rutland MW; Millqvist-Fureby A
    Int J Pharm; 2015; 486(1-2):315-23. PubMed ID: 25841569
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flow, packing and compaction properties of novel coprocessed multifunctional directly compressible excipients prepared from tapioca starch and mannitol.
    Adeoye O; Alebiowu G
    Pharm Dev Technol; 2014 Dec; 19(8):901-10. PubMed ID: 24089696
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formulation and process strategies to minimize coat damage for compaction of coated pellets in a rotary tablet press: A mechanistic view.
    Xu M; Heng PWS; Liew CV
    Int J Pharm; 2016 Feb; 499(1-2):29-37. PubMed ID: 26748363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A quality by design approach to investigate the effect of mannitol and dicalcium phosphate qualities on roll compaction.
    Souihi N; Dumarey M; Wikström H; Tajarobi P; Fransson M; Svensson O; Josefson M; Trygg J
    Int J Pharm; 2013 Apr; 447(1-2):47-61. PubMed ID: 23434544
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved blend and tablet properties of fine pharmaceutical powders via dry particle coating.
    Huang Z; Scicolone JV; Han X; Davé RN
    Int J Pharm; 2015 Jan; 478(2):447-55. PubMed ID: 25475016
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tableting behavior of freeze and spray-dried excipients in pharmaceutical formulations.
    Madi C; Hsein H; Busignies V; Tchoreloff P; Mazel V
    Int J Pharm; 2024 May; 656():124059. PubMed ID: 38552753
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface engineered excipients: I. improved functional properties of fine grade microcrystalline cellulose.
    Chen L; Ding X; He Z; Huang Z; Kunnath KT; Zheng K; Davé RN
    Int J Pharm; 2018 Jan; 536(1):127-137. PubMed ID: 29191481
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.