BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 29705198)

  • 1. Xenopus laevis oocyte as a model for the study of the cytoskeleton.
    Carotenuto R; Tussellino M
    C R Biol; 2018 Apr; 341(4):219-227. PubMed ID: 29705198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein 4.1 and its interaction with other cytoskeletal proteins in Xenopus laevis oogenesis.
    Carotenuto R; Petrucci TC; Correas I; Vaccaro MC; De Marco N; Dale B; Wilding M
    Eur J Cell Biol; 2009 Jun; 88(6):343-56. PubMed ID: 19304341
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Confocal microscopy and 3-D reconstruction of the cytoskeleton of Xenopus oocytes.
    Gard DL
    Microsc Res Tech; 1999 Mar; 44(6):388-414. PubMed ID: 10211674
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Organization of cytokeratin cytoskeleton and germ plasm in the vegetal cortex of Xenopus laevis oocytes depends on coding and non-coding RNAs: three-dimensional and ultrastructural analysis.
    Kloc M; Bilinski S; Dougherty MT
    Exp Cell Res; 2007 May; 313(8):1639-51. PubMed ID: 17376434
    [TBL] [Abstract][Full Text] [Related]  

  • 5. alpha-Spectrin has a stage-specific asymmetrical localization during Xenopus oogenesis.
    Carotenuto R; Vaccaro MC; Capriglione T; Petrucci TC; Campanella C
    Mol Reprod Dev; 2000 Feb; 55(2):229-39. PubMed ID: 10618663
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression of XNOA 36 in the mitochondrial cloud of Xenopus laevis oocytes.
    Vaccaro MC; Wilding M; Dale B; Campanella C; Carotenuto R
    Zygote; 2012 Aug; 20(3):237-42. PubMed ID: 21492502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cytoskeletal proteins associate with components of the ribosomal maturation and translation apparatus in Xenopus stage I oocytes.
    Chierchia L; Tussellino M; Guarino D; Carotenuto R; DeMarco N; Campanella C; Biffo S; Vaccaro MC
    Zygote; 2015 Oct; 23(5):669-82. PubMed ID: 25230050
    [TBL] [Abstract][Full Text] [Related]  

  • 8. N6-Methyladenosine Sequencing Highlights the Involvement of mRNA Methylation in Oocyte Meiotic Maturation and Embryo Development by Regulating Translation in Xenopus laevis.
    Qi ST; Ma JY; Wang ZB; Guo L; Hou Y; Sun QY
    J Biol Chem; 2016 Oct; 291(44):23020-23026. PubMed ID: 27613873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A transient asymmetric distribution of XNOA 36 mRNA and the associated spectrin network bisects Xenopus laevis stage I oocytes along the future A/V axis.
    Vaccaro MC; Gigliotti S; Graziani F; Carotenuto R; De Angelis C; Tussellino M; Campanella C
    Eur J Cell Biol; 2010 Jul; 89(7):525-36. PubMed ID: 20226562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cytoskeleton in Xenopus oocytes and eggs.
    Elinson RP; Houliston E
    Semin Cell Biol; 1990 Oct; 1(5):349-57. PubMed ID: 2102390
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A two-component cytoskeletal system of Xenopus laevis egg cortex: concept of its contractility.
    Ryabova LV; Vassetzky SG
    Int J Dev Biol; 1997 Dec; 41(6):843-51. PubMed ID: 9449460
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The organization and animal-vegetal asymmetry of cytokeratin filaments in stage VI Xenopus oocytes is dependent upon F-actin and microtubules.
    Gard DL; Cha BJ; King E
    Dev Biol; 1997 Apr; 184(1):95-114. PubMed ID: 9142987
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distribution of prosome proteins and their relationship with the cytoskeleton in oogenesis of Xenopus laevis.
    Ryabova LV; Virtanen I; Olink-Coux M; Scherrer K; Vassetzky SG
    Mol Reprod Dev; 1994 Feb; 37(2):195-203. PubMed ID: 8179902
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elaboration of the messenger transport organizer pathway for localization of RNA to the vegetal cortex of Xenopus oocytes.
    Kloc M; Larabell C; Etkin LD
    Dev Biol; 1996 Nov; 180(1):119-30. PubMed ID: 8948579
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [A 2-component cytoskeletal system as the basis of cortical contractility in clawed toad eggs].
    Riabova LV
    Ontogenez; 1995; 26(3):236-47. PubMed ID: 7666999
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Organisation of Xenopus oocyte and egg cortices.
    Chang P; Pérez-Mongiovi D; Houliston E
    Microsc Res Tech; 1999 Mar; 44(6):415-29. PubMed ID: 10211675
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contractile proteins and nonerythroid spectrin in oogenesis of Xenopus laevis.
    Ryabova LV; Virtanen I; Wartiovaara J; Vassetzky SG
    Mol Reprod Dev; 1994 Jan; 37(1):99-109. PubMed ID: 8129937
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oocyte maturation in Xenopus laevis is blocked by the hormonal herbicide, 2,4-dichlorophenoxy acetic acid.
    Stebbins-Boaz B; Fortner K; Frazier J; Piluso S; Pullen S; Rasar M; Reid W; Sinclair K; Winger E
    Mol Reprod Dev; 2004 Feb; 67(2):233-42. PubMed ID: 14694440
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Contractile proteins and nonerythroid spectrin in the oogenesis of the clawed toad].
    Riabova LV; Virtanen I; Vartiovaara J; Vasetskiĭ SG
    Ontogenez; 1992; 23(5):487-500. PubMed ID: 1461633
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stabilization of actin filaments prevents germinal vesicle breakdown and affects microtubule organization in Xenopus oocytes.
    Okada I; Fujiki S; Iwase S; Abe H
    Cytoskeleton (Hoboken); 2012 May; 69(5):312-23. PubMed ID: 22422719
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.