BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

344 related articles for article (PubMed ID: 29705209)

  • 1. High-dimensional NMR methods for intrinsically disordered proteins studies.
    Grudziąż K; Zawadzka-Kazimierczuk A; Koźmiński W
    Methods; 2018 Sep; 148():81-87. PubMed ID: 29705209
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Murrali MG; Schiavina M; Sainati V; Bermel W; Pierattelli R; Felli IC
    J Biomol NMR; 2018 Mar; 70(3):167-175. PubMed ID: 29492731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ensemble Calculation for Intrinsically Disordered Proteins Using NMR Parameters.
    Kragelj J; Blackledge M; Jensen MR
    Adv Exp Med Biol; 2015; 870():123-47. PubMed ID: 26387101
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Six- and seven-dimensional experiments by combination of sparse random sampling and projection spectroscopy dedicated for backbone resonance assignment of intrinsically disordered proteins.
    Żerko S; Koźmiński W
    J Biomol NMR; 2015 Nov; 63(3):283-90. PubMed ID: 26403428
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NMR Spectroscopic Studies of the Conformational Ensembles of Intrinsically Disordered Proteins.
    Kurzbach D; Kontaxis G; Coudevylle N; Konrat R
    Adv Exp Med Biol; 2015; 870():149-85. PubMed ID: 26387102
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NMR Methods for the Study of Instrinsically Disordered Proteins Structure, Dynamics, and Interactions: General Overview and Practical Guidelines.
    Brutscher B; Felli IC; Gil-Caballero S; Hošek T; Kümmerle R; Piai A; Pierattelli R; Sólyom Z
    Adv Exp Med Biol; 2015; 870():49-122. PubMed ID: 26387100
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Describing intrinsically disordered proteins at atomic resolution by NMR.
    Jensen MR; Ruigrok RW; Blackledge M
    Curr Opin Struct Biol; 2013 Jun; 23(3):426-35. PubMed ID: 23545493
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amino acid recognition for automatic resonance assignment of intrinsically disordered proteins.
    Piai A; Gonnelli L; Felli IC; Pierattelli R; Kazimierczuk K; Grudziąż K; Koźmiński W; Zawadzka-Kazimierczuk A
    J Biomol NMR; 2016 Mar; 64(3):239-53. PubMed ID: 26891900
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Use of
    Cook EC; Usher GA; Showalter SA
    Methods Enzymol; 2018; 611():81-100. PubMed ID: 30471706
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conformational propensities of intrinsically disordered proteins from NMR chemical shifts.
    Kragelj J; Ozenne V; Blackledge M; Jensen MR
    Chemphyschem; 2013 Sep; 14(13):3034-45. PubMed ID: 23794453
    [TBL] [Abstract][Full Text] [Related]  

  • 11. (13)C-detected NMR experiments for automatic resonance assignment of IDPs and multiple-fixing SMFT processing.
    Dziekański P; Grudziąż K; Jarvoll P; Koźmiński W; Zawadzka-Kazimierczuk A
    J Biomol NMR; 2015 Jun; 62(2):179-90. PubMed ID: 25902761
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Five and four dimensional experiments for robust backbone resonance assignment of large intrinsically disordered proteins: application to Tau3x protein.
    Żerko S; Byrski P; Włodarczyk-Pruszyński P; Górka M; Ledolter K; Masliah E; Konrat R; Koźmiński W
    J Biomol NMR; 2016 Aug; 65(3-4):193-203. PubMed ID: 27430223
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel methods based on (13)C detection to study intrinsically disordered proteins.
    Felli IC; Pierattelli R
    J Magn Reson; 2014 Apr; 241():115-25. PubMed ID: 24656084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generating NMR chemical shift assignments of intrinsically disordered proteins using carbon-detected NMR methods.
    Sahu D; Bastidas M; Showalter SA
    Anal Biochem; 2014 Mar; 449():17-25. PubMed ID: 24333248
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimal
    Schiavina M; Bracaglia L; Rodella MA; Kümmerle R; Konrat R; Felli IC; Pierattelli R
    Nat Protoc; 2024 Feb; 19(2):406-440. PubMed ID: 38087081
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analytical Description of NMR Relaxation Highlights Correlated Dynamics in Intrinsically Disordered Proteins.
    Salvi N; Abyzov A; Blackledge M
    Angew Chem Int Ed Engl; 2017 Nov; 56(45):14020-14024. PubMed ID: 28834051
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reconstruction of non-uniformly sampled five-dimensional NMR spectra by signal separation algorithm.
    Kosiński K; Stanek J; Górka MJ; Żerko S; Koźmiński W
    J Biomol NMR; 2017 Jun; 68(2):129-138. PubMed ID: 28243768
    [TBL] [Abstract][Full Text] [Related]  

  • 18. XLSY: Extra-Large NMR Spectroscopy.
    Pustovalova Y; Mayzel M; Orekhov VY
    Angew Chem Int Ed Engl; 2018 Oct; 57(43):14043-14045. PubMed ID: 30175546
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct detection of carbon and nitrogen nuclei for high-resolution analysis of intrinsically disordered proteins using NMR spectroscopy.
    Gibbs EB; Kriwacki RW
    Methods; 2018 Apr; 138-139():39-46. PubMed ID: 29341926
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel high-dimensional NMR experiment for resolving protein backbone dihedral angle ambiguities.
    Kauffmann C; Kazimierczuk K; Schwarz TC; Konrat R; Zawadzka-Kazimierczuk A
    J Biomol NMR; 2020 May; 74(4-5):257-265. PubMed ID: 32239382
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.