BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 29705334)

  • 1. Modulation of TGFβ/Smad signaling by the small GTPase RhoB.
    Livitsanou M; Vasilaki E; Stournaras C; Kardassis D
    Cell Signal; 2018 Aug; 48():54-63. PubMed ID: 29705334
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel mechanism of TGFbeta-induced actin reorganization mediated by Smad proteins and Rho GTPases.
    Vardouli L; Vasilaki E; Papadimitriou E; Kardassis D; Stournaras C
    FEBS J; 2008 Aug; 275(16):4074-87. PubMed ID: 18631173
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptional regulation of the small GTPase RhoB gene by TGF{beta}-induced signaling pathways.
    Vasilaki E; Papadimitriou E; Tajadura V; Ridley AJ; Stournaras C; Kardassis D
    FASEB J; 2010 Mar; 24(3):891-905. PubMed ID: 19890017
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TGFβ-induced early activation of the small GTPase RhoA is Smad2/3-independent and involves Src and the guanine nucleotide exchange factor Vav2.
    Papadimitriou E; Kardassis D; Moustakas A; Stournaras C
    Cell Physiol Biochem; 2011; 28(2):229-38. PubMed ID: 21865730
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Requirement of a dynein light chain in TGFbeta/Smad3 signaling.
    Jin Q; Gao G; Mulder KM
    J Cell Physiol; 2009 Dec; 221(3):707-15. PubMed ID: 19711352
    [TBL] [Abstract][Full Text] [Related]  

  • 6. LIM-kinase 2 and cofilin phosphorylation mediate actin cytoskeleton reorganization induced by transforming growth factor-beta.
    Vardouli L; Moustakas A; Stournaras C
    J Biol Chem; 2005 Mar; 280(12):11448-57. PubMed ID: 15647284
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interleukin 1 β-induced SMAD2/3 linker modifications are TAK1 dependent and delay TGFβ signaling in primary human mesenchymal stem cells.
    van den Akker GG; van Beuningen HM; Vitters EL; Koenders MI; van de Loo FA; van Lent PL; Blaney Davidson EN; van der Kraan PM
    Cell Signal; 2017 Dec; 40():190-199. PubMed ID: 28943409
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel strategy for specifically down-regulating individual Rho GTPase activity in tumor cells.
    Wang L; Yang L; Luo Y; Zheng Y
    J Biol Chem; 2003 Nov; 278(45):44617-25. PubMed ID: 12939257
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Peroxisome proliferator-activated receptor γ (PPARγ) plays a critical role in the development of TGFβ resistance of H460 cell.
    Lin LC; Hsu SL; Wu CL; Liu WC; Hsueh CM
    Cell Signal; 2011 Oct; 23(10):1640-50. PubMed ID: 21664967
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cyclic AMP enhances TGFβ responses of breast cancer cells by upregulating TGFβ receptor I expression.
    Oerlecke I; Bauer E; Dittmer A; Leyh B; Dittmer J
    PLoS One; 2013; 8(1):e54261. PubMed ID: 23349840
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aberrant TGFβ Signaling Contributes to Altered Trophoblast Differentiation in Preeclampsia.
    Xu J; Sivasubramaniyam T; Yinon Y; Tagliaferro A; Ray J; Nevo O; Post M; Caniggia I
    Endocrinology; 2016 Feb; 157(2):883-99. PubMed ID: 26653761
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Smad3 regulates Rho signaling via NET1 in the transforming growth factor-beta-induced epithelial-mesenchymal transition of human retinal pigment epithelial cells.
    Lee J; Moon HJ; Lee JM; Joo CK
    J Biol Chem; 2010 Aug; 285(34):26618-27. PubMed ID: 20547485
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long Noncoding RNA
    Sakai S; Ohhata T; Kitagawa K; Uchida C; Aoshima T; Niida H; Suzuki T; Inoue Y; Miyazawa K; Kitagawa M
    Cancer Res; 2019 Jun; 79(11):2821-2838. PubMed ID: 30952633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RhoA, RhoB and RhoC differentially regulate endothelial barrier function.
    Pronk MCA; van Bezu JSM; van Nieuw Amerongen GP; van Hinsbergh VWM; Hordijk PL
    Small GTPases; 2019 Nov; 10(6):466-484. PubMed ID: 28949796
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptional and post-transcriptional regulation of the genes encoding the small GTPases RhoA, RhoB, and RhoC: implications for the pathogenesis of human diseases.
    Nomikou E; Livitsanou M; Stournaras C; Kardassis D
    Cell Mol Life Sci; 2018 Jun; 75(12):2111-2124. PubMed ID: 29500478
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel function for p21Cip1 and acetyltransferase p/CAF as critical transcriptional regulators of TGFβ-mediated breast cancer cell migration and invasion.
    Dai M; Al-Odaini AA; Arakelian A; Rabbani SA; Ali S; Lebrun JJ
    Breast Cancer Res; 2012 Sep; 14(5):R127. PubMed ID: 22995475
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential regulation of transforming growth factor beta signaling pathways by Notch in human endothelial cells.
    Fu Y; Chang A; Chang L; Niessen K; Eapen S; Setiadi A; Karsan A
    J Biol Chem; 2009 Jul; 284(29):19452-62. PubMed ID: 19473993
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fine-tuning of Smad protein function by poly(ADP-ribose) polymerases and poly(ADP-ribose) glycohydrolase during transforming growth factor β signaling.
    Dahl M; Maturi V; Lönn P; Papoutsoglou P; Zieba A; Vanlandewijck M; van der Heide LP; Watanabe Y; Söderberg O; Hottiger MO; Heldin CH; Moustakas A
    PLoS One; 2014; 9(8):e103651. PubMed ID: 25133494
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TGFβ1-Smad Signaling Pathway Participates in Interleukin-33 Induced Epithelial-to-Mesenchymal Transition of A549 Cells.
    Tan QY; Cheng ZS
    Cell Physiol Biochem; 2018; 50(2):757-767. PubMed ID: 30308508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Erbin inhibits transforming growth factor beta signaling through a novel Smad-interacting domain.
    Dai F; Chang C; Lin X; Dai P; Mei L; Feng XH
    Mol Cell Biol; 2007 Sep; 27(17):6183-94. PubMed ID: 17591701
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.