These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 29705435)

  • 1. Mechanism of the influence of hydrodynamics on Microcystis aeruginosa, a dominant bloom species in reservoirs.
    Song Y; Zhang LL; Li J; Chen M; Zhang YW
    Sci Total Environ; 2018 Sep; 636():230-239. PubMed ID: 29705435
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism Underlying Flow Velocity and Its Corresponding Influence on the Growth of
    Tan Y; Li J; Zhang L; Chen M; Zhang Y; An R
    Int J Environ Res Public Health; 2019 Nov; 16(23):. PubMed ID: 31766587
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Key hydrodynamic principles for controlling algal blooms using emergency reservoir operation strategies.
    Song Y; You L; Chen M; Li J; Zhang L; Peng T
    J Environ Manage; 2023 Jan; 325(Pt A):116470. PubMed ID: 36244283
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study of a hydrodynamic threshold system for controlling dinoflagellate blooms in reservoirs.
    Song Y; Shen L; Zhang L; Li J; Chen M
    Environ Pollut; 2021 Jun; 278():116822. PubMed ID: 33677223
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removal of Microcystis aeruginosa using hydrodynamic cavitation: performance and mechanisms.
    Li P; Song Y; Yu S
    Water Res; 2014 Oct; 62():241-8. PubMed ID: 24960124
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The response of phosphorus uptake strategies of Microcystis aeruginosa to hydrodynamics fluctuations.
    Zheng Y; Mi W; Bi Y; Hu Z
    Environ Sci Pollut Res Int; 2017 Apr; 24(10):9251-9258. PubMed ID: 28224338
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of phosphorus availability and phosphorus utilization behavior of Microcystis aeruginosa on its adaptation capability to ultraviolet radiation.
    Ren L; Wang P; Wang C; Paerl HW; Wang H
    Environ Pollut; 2020 Jan; 256():113441. PubMed ID: 31672370
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effective removal of Microcystis aeruginosa and microcystin-LR using nanosilicate platelets.
    Chang SC; Li CH; Lin JJ; Li YH; Lee MR
    Chemosphere; 2014 Mar; 99():49-55. PubMed ID: 24268348
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of hydrodynamic cavitation on Microcystis aeruginosa: Physical and chemical factors.
    Li P; Song Y; Yu S; Park HD
    Chemosphere; 2015 Oct; 136():245-51. PubMed ID: 26026840
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Turbulence exerts nutrients uptake and assimilation of bloom-forming Dolichospermum through modulating morphological traits: Field and chemostat culture studies.
    Zhang S; Xiao Y; Li Z; Wang S; Guo J; Lu L
    Sci Total Environ; 2019 Jun; 671():329-338. PubMed ID: 30933789
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects and control of metal nutrients and species on Microcystis aeruginosa growth and bloom.
    Zhou H; Chen X; Liu X; Xuan Y; Hu T
    Water Environ Res; 2019 Jan; 91(1):21-31. PubMed ID: 30682229
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gramine-induced growth inhibition, oxidative damage and antioxidant responses in freshwater cyanobacterium Microcystis aeruginosa.
    Hong Y; Hu HY; Xie X; Sakoda A; Sagehashi M; Li FM
    Aquat Toxicol; 2009 Feb; 91(3):262-9. PubMed ID: 19131120
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strong turbulence benefits toxic and colonial cyanobacteria in water: A potential way of climate change impact on the expansion of Harmful Algal Blooms.
    Liu M; Ma J; Kang L; Wei Y; He Q; Hu X; Li H
    Sci Total Environ; 2019 Jun; 670():613-622. PubMed ID: 30909039
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Longitudinal hydrodynamic characteristics in reservoir tributary embayments and effects on algal blooms.
    Dai H; Mao J; Jiang D; Wang L
    PLoS One; 2013; 8(7):e68186. PubMed ID: 23874534
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved eutrophication model with flow velocity-influence function and application for algal bloom control in a reservoir in East China.
    Cui J; Xu H; Cui Y; Song C; Qu Y; Zhang S; Zhang H
    J Environ Manage; 2023 Dec; 348():119209. PubMed ID: 37837758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphorus released from sediment of Dianchi Lake and its effect on growth of Microcystis aeruginosa.
    Liu J; Luo X; Zhang N; Wu Y
    Environ Sci Pollut Res Int; 2016 Aug; 23(16):16321-8. PubMed ID: 27155834
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antioxidant responses of triangle sail mussel Hyriopsis cumingii exposed to harmful algae Microcystis aeruginosa and hypoxia.
    Hu M; Wu F; Yuan M; Li Q; Gu Y; Wang Y; Liu Q
    Chemosphere; 2015 Nov; 139():541-9. PubMed ID: 26318116
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of morphological changes in algae adaptation to nutrient stress at the single-cell level.
    Yan P; Guo JS; Zhang P; Xiao Y; Li Z; Zhang SQ; Zhang YX; He SX
    Sci Total Environ; 2021 Feb; 754():142076. PubMed ID: 32920391
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The efficacy and mechanisms of fungal suppression of freshwater harmful algal bloom species.
    Jia Y; Han G; Wang C; Guo P; Jiang W; Li X; Tian X
    J Hazard Mater; 2010 Nov; 183(1-3):176-81. PubMed ID: 20675050
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Method to Prepare Magnetic Nanosilicate Platelets for Effective Removal of Microcystis aeruginosa and Microcystin-LR.
    Chang SC; Lu BL; Lin JJ; Li YH; Lee MR
    Methods Mol Biol; 2017; 1600():85-94. PubMed ID: 28478559
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.