These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 29705497)

  • 1. Presynaptic inhibition mechanisms may subserve the spinal excitability modulation induced by neuromuscular electrical stimulation.
    Grosprêtre S; Gueugneau N; Martin A; Lepers R
    J Electromyogr Kinesiol; 2018 Jun; 40():95-101. PubMed ID: 29705497
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vibration-induced depression in spinal loop excitability revisited.
    Souron R; Baudry S; Millet GY; Lapole T
    J Physiol; 2019 Nov; 597(21):5179-5193. PubMed ID: 31429066
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced D1 and D2 inhibitions induced by low-frequency trains of conditioning stimuli: differential effects on H- and T-reflexes and possible mechanisms.
    Mezzarane RA; Magalhães FH; Chaud VM; Elias LA; Kohn AF
    PLoS One; 2015; 10(3):e0121496. PubMed ID: 25807195
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of a complex balance task on soleus H-reflex and presynaptic inhibition in humans.
    Kitano K; Tsuruike M; Robertson CT; Kocejal DM
    Electromyogr Clin Neurophysiol; 2009; 49(5):235-43. PubMed ID: 19694211
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of the H-reflex at two contraction levels before and after fatigue.
    Stutzig N; Siebert T
    Scand J Med Sci Sports; 2017 Apr; 27(4):399-407. PubMed ID: 26887575
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of acute responses in spinal excitability between older and young people after neuromuscular electrical stimulation.
    Scalia M; Parrella M; Borzuola R; Macaluso A
    Eur J Appl Physiol; 2024 Jan; 124(1):353-363. PubMed ID: 37524980
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of neuromuscular electrical stimulation intensity over the tibial nerve trunk on triceps surae muscle fatigue.
    Doix AC; Matkowski B; Martin A; Roeleveld K; Colson SS
    Eur J Appl Physiol; 2014 Feb; 114(2):317-29. PubMed ID: 24281826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of spinal excitability following neuromuscular electrical stimulation superimposed to voluntary contraction.
    Borzuola R; Labanca L; Macaluso A; Laudani L
    Eur J Appl Physiol; 2020 Sep; 120(9):2105-2113. PubMed ID: 32676751
    [TBL] [Abstract][Full Text] [Related]  

  • 9. H-reflex and M-wave responses after voluntary and electrically evoked muscle cramping.
    Harmsen JF; Latella C; Mesquita R; Fasse A; Schumann M; Behringer M; Taylor J; Nosaka K
    Eur J Appl Physiol; 2021 Feb; 121(2):659-672. PubMed ID: 33245422
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spinal reciprocal inhibition in the co-contraction of the lower leg depends on muscle activity ratio.
    Hirabayashi R; Edama M; Kojima S; Ito W; Nakamura E; Kikumoto T; Onishi H
    Exp Brain Res; 2019 Jun; 237(6):1469-1478. PubMed ID: 30899999
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spinal plasticity with motor imagery practice.
    Grosprêtre S; Lebon F; Papaxanthis C; Martin A
    J Physiol; 2019 Feb; 597(3):921-934. PubMed ID: 30417924
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Short-term inhibition of spinal reflexes in multiple lower limb muscles after neuromuscular electrical stimulation of ankle plantar flexors.
    Milosevic M; Masugi Y; Obata H; Sasaki A; Popovic MR; Nakazawa K
    Exp Brain Res; 2019 Feb; 237(2):467-476. PubMed ID: 30460394
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in spinal but not cortical excitability following combined electrical stimulation of the tibial nerve and voluntary plantar-flexion.
    Lagerquist O; Mang CS; Collins DF
    Exp Brain Res; 2012 Oct; 222(1-2):41-53. PubMed ID: 22899312
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Can motor imagery balance the acute fatigue induced by neuromuscular electrical stimulation?
    Eon P; Grosprêtre S; Martin A
    Eur J Appl Physiol; 2023 May; 123(5):1003-1014. PubMed ID: 36622447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intersession reliability of Hoffmann reflex gain and presynaptic inhibition in the human soleus muscle.
    Hayes BT; Hicks-Little CA; Harter RA; Widrick JJ; Hoffman MA
    Arch Phys Med Rehabil; 2009 Dec; 90(12):2131-4. PubMed ID: 19969180
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in corticospinal excitability evoked by common peroneal nerve stimulation depend on stimulation frequency.
    Mang CS; Lagerquist O; Collins DF
    Exp Brain Res; 2010 May; 203(1):11-20. PubMed ID: 20217400
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Presynaptic control of group Ia afferents in relation to acquisition of a visuo-motor skill in healthy humans.
    Perez MA; Lungholt BK; Nielsen JB
    J Physiol; 2005 Oct; 568(Pt 1):343-54. PubMed ID: 16051628
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recovery pattern of motor reflex after a single bout of neuromuscular electrical stimulation session.
    Laurin J; Dousset E; Carrivale R; Grélot L; Decherchi P
    Scand J Med Sci Sports; 2012 Aug; 22(4):534-44. PubMed ID: 21362055
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of hip joint angle changes on intersegmental spinal coupling in human spinal cord injury.
    Knikou M
    Exp Brain Res; 2005 Dec; 167(3):381-93. PubMed ID: 16059682
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time-dependent effects of neuromuscular electrical stimulation on changes in spinal excitability are dependent on stimulation frequency: a preliminary study in healthy adults.
    Koyama S; Tanabe S; Ishikawa T; Itoh S; Kubota S; Sakurai H; Kanada Y
    Somatosens Mot Res; 2014 Dec; 31(4):221-6. PubMed ID: 25046544
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.