These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 29705520)

  • 21. Comparison of ground reaction force and marker-based methods to estimate mediolateral center of mass displacement and margins of stability during walking.
    Buurke TJW; van de Venis L; den Otter R; Nonnekes J; Keijsers N
    J Biomech; 2023 Jan; 146():111415. PubMed ID: 36542905
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dynamic balance during walking in people with multiple sclerosis: A cross-sectional study.
    Anastasi D; Lencioni T; Carpinella I; Castagna A; Crippa A; Gervasoni E; Corrini C; Marzegan A; Rabuffetti M; Ferrarin M; Cattaneo D
    Proc Inst Mech Eng H; 2023 Feb; 237(2):199-208. PubMed ID: 36727607
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Voluntary changes in step width and step length during human walking affect dynamic margins of stability.
    McAndrew Young PM; Dingwell JB
    Gait Posture; 2012 Jun; 36(2):219-24. PubMed ID: 22472707
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A new perspective on the walking margin of stability.
    Terry K; Stanley C; Damiano D
    J Appl Biomech; 2014 Dec; 30(6):737-41. PubMed ID: 25185117
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Exploring harmonic walking development in children with unilateral cerebral palsy and typically developing toddlers: Insights from walking experience.
    De Bartolo D; Borhanazad M; Goudriaan M; Bekius A; Zandvoort CS; Buizer AI; Morelli D; Assenza C; Vermeulen RJ; Martens BHM; Iosa M; Dominici N
    Hum Mov Sci; 2024 Jun; 95():103218. PubMed ID: 38643727
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Correlations between measures of dynamic balance in individuals with post-stroke hemiparesis.
    Vistamehr A; Kautz SA; Bowden MG; Neptune RR
    J Biomech; 2016 Feb; 49(3):396-400. PubMed ID: 26795124
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Contribution of lower limb eccentric work and different step responses to balance recovery among older adults.
    Nagano H; Levinger P; Downie C; Hayes A; Begg R
    Gait Posture; 2015 Sep; 42(3):257-62. PubMed ID: 26077787
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modeling margin of stability with feet in place following a postural perturbation: Effect of altered anthropometric models for estimated extrapolated centre of mass.
    Inkol KA; Huntley AH; Vallis LA
    Gait Posture; 2018 May; 62():434-439. PubMed ID: 29653405
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Upper body and ankle strategies compensate for reduced lateral stability at very slow walking speeds.
    Best AN; Wu AR
    Proc Biol Sci; 2020 Oct; 287(1936):20201685. PubMed ID: 33049173
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A pelvis-oriented margin of stability is robust against deviations in walking direction.
    Christensen MS; Tracy JB; Crenshaw JR
    J Biomech; 2023 Nov; 160():111812. PubMed ID: 37783187
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dynamic stability and spatiotemporal parameters during turning in healthy young adults.
    He C; Xu R; Zhao M; Guo Y; Jiang S; He F; Ming D
    Biomed Eng Online; 2018 Sep; 17(1):127. PubMed ID: 30241535
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Differences in the dynamic gait stability of children with cerebral palsy and typically developing children.
    Kurz MJ; Arpin DJ; Corr B
    Gait Posture; 2012 Jul; 36(3):600-4. PubMed ID: 22743027
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Obstacle Crossing During Gait in Children With Cerebral Palsy: Cross-Sectional Study With Kinematic Analysis of Dynamic Balance and Trunk Control.
    Malone A; Kiernan D; French H; Saunders V; O'Brien T
    Phys Ther; 2016 Aug; 96(8):1208-15. PubMed ID: 26893506
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stability-normalised walking speed: A new approach for human gait perturbation research.
    McCrum C; Willems P; Karamanidis K; Meijer K
    J Biomech; 2019 Apr; 87():48-53. PubMed ID: 30827703
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of gait speed on the body's center of mass motion relative to the center of pressure during over-ground walking.
    Lu HL; Kuo MY; Chang CF; Lu TW; Hong SW
    Hum Mov Sci; 2017 Aug; 54():354-362. PubMed ID: 28688302
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Small directional treadmill perturbations induce differential gait stability adaptation.
    Li J; Huang HJ
    J Neurophysiol; 2022 Jan; 127(1):38-55. PubMed ID: 34851745
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Prospective dynamic balance control during the swing phase of walking: stability boundaries and time-to-contact analysis.
    Remelius JG; Hamill J; van Emmerik RE
    Hum Mov Sci; 2014 Aug; 36():227-45. PubMed ID: 24856189
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanisms for regulating step length while running towards and over an obstacle.
    Larsen RJ; Jackson WH; Schmitt D
    Hum Mov Sci; 2016 Oct; 49():186-95. PubMed ID: 27423264
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Does variability of footfall kinematics correlate with dynamic stability of the centre of mass during walking?
    König Ignasiak N; Ravi DK; Orter S; Hosseini Nasab SH; Taylor WR; Singh NB
    PLoS One; 2019; 14(5):e0217460. PubMed ID: 31150452
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Kinematics in newly walking toddlers does not depend upon postural stability.
    Ivanenko YP; Dominici N; Cappellini G; Lacquaniti F
    J Neurophysiol; 2005 Jul; 94(1):754-63. PubMed ID: 15728772
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.