BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1498 related articles for article (PubMed ID: 29705574)

  • 1. Automatic recognition of holistic functional brain networks using iteratively optimized convolutional neural networks (IO-CNN) with weak label initialization.
    Zhao Y; Ge F; Liu T
    Med Image Anal; 2018 Jul; 47():111-126. PubMed ID: 29705574
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automatic Recognition of fMRI-Derived Functional Networks Using 3-D Convolutional Neural Networks.
    Zhao Y; Dong Q; Zhang S; Zhang W; Chen H; Jiang X; Guo L; Hu X; Han J; Liu T
    IEEE Trans Biomed Eng; 2018 Sep; 65(9):1975-1984. PubMed ID: 28641239
    [TBL] [Abstract][Full Text] [Related]  

  • 3. fMRI volume classification using a 3D convolutional neural network robust to shifted and scaled neuronal activations.
    Vu H; Kim HC; Jung M; Lee JH
    Neuroimage; 2020 Dec; 223():117328. PubMed ID: 32896633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Constructing fine-granularity functional brain network atlases via deep convolutional autoencoder.
    Zhao Y; Dong Q; Chen H; Iraji A; Li Y; Makkie M; Kou Z; Liu T
    Med Image Anal; 2017 Dec; 42():200-211. PubMed ID: 28843214
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brain MRI analysis using a deep learning based evolutionary approach.
    Shahamat H; Saniee Abadeh M
    Neural Netw; 2020 Jun; 126():218-234. PubMed ID: 32259762
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transfer learning of deep neural network representations for fMRI decoding.
    Svanera M; Savardi M; Benini S; Signoroni A; Raz G; Hendler T; Muckli L; Goebel R; Valente G
    J Neurosci Methods; 2019 Dec; 328():108319. PubMed ID: 31585315
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling Hierarchical Brain Networks via Volumetric Sparse Deep Belief Network.
    Dong Q; Ge F; Ning Q; Zhao Y; Lv J; Huang H; Yuan J; Jiang X; Shen D; Liu T
    IEEE Trans Biomed Eng; 2020 Jun; 67(6):1739-1748. PubMed ID: 31647417
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling Task fMRI Data Via Deep Convolutional Autoencoder.
    Huang H; Hu X; Zhao Y; Makkie M; Dong Q; Zhao S; Guo L; Liu T
    IEEE Trans Med Imaging; 2018 Jul; 37(7):1551-1561. PubMed ID: 28641247
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Multichannel 2D Convolutional Neural Network Model for Task-Evoked fMRI Data Classification.
    Hu J; Kuang Y; Liao B; Cao L; Dong S; Li P
    Comput Intell Neurosci; 2019; 2019():5065214. PubMed ID: 32082370
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolution of Deep Convolutional Neural Networks Using Cartesian Genetic Programming.
    Suganuma M; Kobayashi M; Shirakawa S; Nagao T
    Evol Comput; 2020; 28(1):141-163. PubMed ID: 30900927
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Convolutional neural networks for skull-stripping in brain MR imaging using silver standard masks.
    Lucena O; Souza R; Rittner L; Frayne R; Lotufo R
    Artif Intell Med; 2019 Jul; 98():48-58. PubMed ID: 31521252
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep convolutional neural networks for brain image analysis on magnetic resonance imaging: a review.
    Bernal J; Kushibar K; Asfaw DS; Valverde S; Oliver A; Martí R; Lladó X
    Artif Intell Med; 2019 Apr; 95():64-81. PubMed ID: 30195984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DeepNAT: Deep convolutional neural network for segmenting neuroanatomy.
    Wachinger C; Reuter M; Klein T
    Neuroimage; 2018 Apr; 170():434-445. PubMed ID: 28223187
    [TBL] [Abstract][Full Text] [Related]  

  • 14. White blood cells detection and classification based on regional convolutional neural networks.
    Kutlu H; Avci E; Özyurt F
    Med Hypotheses; 2020 Feb; 135():109472. PubMed ID: 31760248
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiscale brain MRI super-resolution using deep 3D convolutional networks.
    Pham CH; Tor-Díez C; Meunier H; Bednarek N; Fablet R; Passat N; Rousseau F
    Comput Med Imaging Graph; 2019 Oct; 77():101647. PubMed ID: 31493703
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Classification of schizophrenia and normal controls using 3D convolutional neural network and outcome visualization.
    Oh K; Kim W; Shen G; Piao Y; Kang NI; Oh IS; Chung YC
    Schizophr Res; 2019 Oct; 212():186-195. PubMed ID: 31395487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ensemble learning with 3D convolutional neural networks for functional connectome-based prediction.
    Khosla M; Jamison K; Kuceyeski A; Sabuncu MR
    Neuroimage; 2019 Oct; 199():651-662. PubMed ID: 31220576
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diagnosis of Autism Spectrum Disorders in Young Children Based on Resting-State Functional Magnetic Resonance Imaging Data Using Convolutional Neural Networks.
    Aghdam MA; Sharifi A; Pedram MM
    J Digit Imaging; 2019 Dec; 32(6):899-918. PubMed ID: 30963340
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast and Precise Hippocampus Segmentation Through Deep Convolutional Neural Network Ensembles and Transfer Learning.
    Ataloglou D; Dimou A; Zarpalas D; Daras P
    Neuroinformatics; 2019 Oct; 17(4):563-582. PubMed ID: 30877605
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Facial Expressions Recognition for Human-Robot Interaction Using Deep Convolutional Neural Networks with Rectified Adam Optimizer.
    Melinte DO; Vladareanu L
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32340140
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 75.