BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1498 related articles for article (PubMed ID: 29705574)

  • 21. AMC-Net: Asymmetric and multi-scale convolutional neural network for multi-label HPA classification.
    Xiang S; Liang Q; Hu Y; Tang P; Coppola G; Zhang D; Sun W
    Comput Methods Programs Biomed; 2019 Sep; 178():275-287. PubMed ID: 31416555
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Analysis of the role and robustness of artificial intelligence in commodity image recognition under deep learning neural network.
    Chen R; Wang M; Lai Y
    PLoS One; 2020; 15(7):e0235783. PubMed ID: 32634167
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dyslexia detection using 3D convolutional neural networks and functional magnetic resonance imaging.
    Zahia S; Garcia-Zapirain B; Saralegui I; Fernandez-Ruanova B
    Comput Methods Programs Biomed; 2020 Dec; 197():105726. PubMed ID: 32916543
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Three-dimensional convolutional neural networks for simultaneous dual-tracer PET imaging.
    Xu J; Liu H
    Phys Med Biol; 2019 Sep; 64(18):185016. PubMed ID: 31292287
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Wavelet-enhanced convolutional neural network: a new idea in a deep learning paradigm.
    Savareh BA; Emami H; Hajiabadi M; Azimi SM; Ghafoori M
    Biomed Tech (Berl); 2019 Apr; 64(2):195-205. PubMed ID: 29813023
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hierarchical Individual Naturalistic Functional Brain Networks with Group Consistency uncovered by a Two-Stage NAS-Volumetric Sparse DBN Framework.
    Xu S; Ren Y; Tao Z; Song L; He X
    eNeuro; 2022 Aug; 9(5):. PubMed ID: 35995557
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evolutional Neural Architecture Search for Optimization of Spatiotemporal Brain Network Decomposition.
    Li Q; Zhang W; Zhao L; Wu X; Liu T
    IEEE Trans Biomed Eng; 2022 Feb; 69(2):624-634. PubMed ID: 34357861
    [TBL] [Abstract][Full Text] [Related]  

  • 28. MANTIS: Model-Augmented Neural neTwork with Incoherent k-space Sampling for efficient MR parameter mapping.
    Liu F; Feng L; Kijowski R
    Magn Reson Med; 2019 Jul; 82(1):174-188. PubMed ID: 30860285
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Automatic brain labeling via multi-atlas guided fully convolutional networks.
    Fang L; Zhang L; Nie D; Cao X; Rekik I; Lee SW; He H; Shen D
    Med Image Anal; 2019 Jan; 51():157-168. PubMed ID: 30447544
    [TBL] [Abstract][Full Text] [Related]  

  • 30. 4D Modeling of fMRI Data via Spatio-Temporal Convolutional Neural Networks (ST-CNN).
    Zhao Y; Li X; Huang H; Zhang W; Zhao S; Makkie M; Zhang M; Li Q; Liu T
    IEEE Trans Cogn Dev Syst; 2020 Sep; 12(3):451-460. PubMed ID: 33748420
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bi-channel image registration and deep-learning segmentation (BIRDS) for efficient, versatile 3D mapping of mouse brain.
    Wang X; Zeng W; Yang X; Zhang Y; Fang C; Zeng S; Han Y; Fei P
    Elife; 2021 Jan; 10():. PubMed ID: 33459255
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Segmentation of white matter hyperintensities using convolutional neural networks with global spatial information in routine clinical brain MRI with none or mild vascular pathology.
    Rachmadi MF; Valdés-Hernández MDC; Agan MLF; Di Perri C; Komura T;
    Comput Med Imaging Graph; 2018 Jun; 66():28-43. PubMed ID: 29523002
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Magnetic Resonance Imaging Images Based Brain Tumor Extraction, Segmentation and Detection Using Convolutional Neural Network and VGC 16 Model.
    Shunmugavel G; Suriyan K; Arumugam J
    Am J Clin Oncol; 2024 Jul; 47(7):339-349. PubMed ID: 38632686
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A robust DWT-CNN-based CAD system for early diagnosis of autism using task-based fMRI.
    Haweel R; Shalaby A; Mahmoud A; Seada N; Ghoniemy S; Ghazal M; Casanova MF; Barnes GN; El-Baz A
    Med Phys; 2021 May; 48(5):2315-2326. PubMed ID: 33378589
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Large scale tissue histopathology image classification, segmentation, and visualization via deep convolutional activation features.
    Xu Y; Jia Z; Wang LB; Ai Y; Zhang F; Lai M; Chang EI
    BMC Bioinformatics; 2017 May; 18(1):281. PubMed ID: 28549410
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Generation of PET Attenuation Map for Whole-Body Time-of-Flight
    Hwang D; Kang SK; Kim KY; Seo S; Paeng JC; Lee DS; Lee JS
    J Nucl Med; 2019 Aug; 60(8):1183-1189. PubMed ID: 30683763
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modeling task-based fMRI data via deep belief network with neural architecture search.
    Qiang N; Dong Q; Zhang W; Ge B; Ge F; Liang H; Sun Y; Gao J; Liu T
    Comput Med Imaging Graph; 2020 Jul; 83():101747. PubMed ID: 32593949
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Deep Convolutional Neural Network for Ulcer Recognition in Wireless Capsule Endoscopy: Experimental Feasibility and Optimization.
    Wang S; Xing Y; Zhang L; Gao H; Zhang H
    Comput Math Methods Med; 2019; 2019():7546215. PubMed ID: 31641370
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A convolutional neural network algorithm for automatic segmentation of head and neck organs at risk using deep lifelong learning.
    Chan JW; Kearney V; Haaf S; Wu S; Bogdanov M; Reddick M; Dixit N; Sudhyadhom A; Chen J; Yom SS; Solberg TD
    Med Phys; 2019 May; 46(5):2204-2213. PubMed ID: 30887523
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification of Autism Subtypes Based on Wavelet Coherence of BOLD FMRI Signals Using Convolutional Neural Network.
    Al-Hiyali MI; Yahya N; Faye I; Hussein AF
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450699
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 75.