BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1512 related articles for article (PubMed ID: 29705574)

  • 41. Identification of Autism Subtypes Based on Wavelet Coherence of BOLD FMRI Signals Using Convolutional Neural Network.
    Al-Hiyali MI; Yahya N; Faye I; Hussein AF
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450699
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Combination of rs-fMRI and sMRI Data to Discriminate Autism Spectrum Disorders in Young Children Using Deep Belief Network.
    Akhavan Aghdam M; Sharifi A; Pedram MM
    J Digit Imaging; 2018 Dec; 31(6):895-903. PubMed ID: 29736781
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Comparing lesion segmentation methods in multiple sclerosis: Input from one manually delineated subject is sufficient for accurate lesion segmentation.
    Weeda MM; Brouwer I; de Vos ML; de Vries MS; Barkhof F; Pouwels PJW; Vrenken H
    Neuroimage Clin; 2019; 24():102074. PubMed ID: 31734527
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Deep Multi-Scale 3D Convolutional Neural Network (CNN) for MRI Gliomas Brain Tumor Classification.
    Mzoughi H; Njeh I; Wali A; Slima MB; BenHamida A; Mhiri C; Mahfoudhe KB
    J Digit Imaging; 2020 Aug; 33(4):903-915. PubMed ID: 32440926
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Transfer learning improves resting-state functional connectivity pattern analysis using convolutional neural networks.
    Vakli P; Deák-Meszlényi RJ; Hermann P; Vidnyánszky Z
    Gigascience; 2018 Dec; 7(12):. PubMed ID: 30395218
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Utilizing wavelet deep learning network to classify different states of task-fMRI for verifying activation regions.
    Gui S; Gui R
    Int J Neurosci; 2020 Jun; 130(6):583-594. PubMed ID: 31778088
    [No Abstract]   [Full Text] [Related]  

  • 47. Automated image quality evaluation of structural brain MRI using an ensemble of deep learning networks.
    Sujit SJ; Coronado I; Kamali A; Narayana PA; Gabr RE
    J Magn Reson Imaging; 2019 Oct; 50(4):1260-1267. PubMed ID: 30811739
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Discretely-constrained deep network for weakly supervised segmentation.
    Peng J; Kervadec H; Dolz J; Ben Ayed I; Pedersoli M; Desrosiers C
    Neural Netw; 2020 Oct; 130():297-308. PubMed ID: 32721843
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Large-scale sparse functional networks from resting state fMRI.
    Li H; Satterthwaite TD; Fan Y
    Neuroimage; 2017 Aug; 156():1-13. PubMed ID: 28483721
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A semi-blind online dictionary learning approach for fMRI data.
    Long Z; Liu L; Gao Z; Chen M; Yao L
    J Neurosci Methods; 2019 Jul; 323():1-12. PubMed ID: 31085215
    [TBL] [Abstract][Full Text] [Related]  

  • 51. 3D convolutional neural networks for tumor segmentation using long-range 2D context.
    Mlynarski P; Delingette H; Criminisi A; Ayache N
    Comput Med Imaging Graph; 2019 Apr; 73():60-72. PubMed ID: 30889541
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Intra and inter-regional functional connectivity of the human brain due to Task-Evoked fMRI Data classification through CNN & LSTM.
    Kaheni H; Shiran MB; Kamrava SK; Zare-Sadeghi A
    J Neuroradiol; 2024 Jun; 51(4):101188. PubMed ID: 38408721
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Triplet Deep Hashing with Joint Supervised Loss Based on Deep Neural Networks.
    Li M; An Z; Wei Q; Xiang K; Ma Y
    Comput Intell Neurosci; 2019; 2019():8490364. PubMed ID: 31687007
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Volume Reduction Techniques for the Classification of Independent Components of rs-fMRI Data: a Study with Convolutional Neural Networks.
    Mera Jiménez L; Ochoa Gómez JF
    Neuroinformatics; 2022 Jan; 20(1):73-90. PubMed ID: 33829386
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Automatically Designing CNN Architectures Using the Genetic Algorithm for Image Classification.
    Sun Y; Xue B; Zhang M; Yen GG; Lv J
    IEEE Trans Cybern; 2020 Sep; 50(9):3840-3854. PubMed ID: 32324588
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Study of the Application of Deep Convolutional Neural Networks (CNNs) in Processing Sensor Data and Biomedical Images.
    Hu W; Zhang Y; Li L
    Sensors (Basel); 2019 Aug; 19(16):. PubMed ID: 31426516
    [TBL] [Abstract][Full Text] [Related]  

  • 57. BIRNet: Brain image registration using dual-supervised fully convolutional networks.
    Fan J; Cao X; Yap PT; Shen D
    Med Image Anal; 2019 May; 54():193-206. PubMed ID: 30939419
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Automatic classification of dopamine transporter SPECT: deep convolutional neural networks can be trained to be robust with respect to variable image characteristics.
    Wenzel M; Milletari F; Krüger J; Lange C; Schenk M; Apostolova I; Klutmann S; Ehrenburg M; Buchert R
    Eur J Nucl Med Mol Imaging; 2019 Dec; 46(13):2800-2811. PubMed ID: 31473800
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Multimodal MRI-based classification of migraine: using deep learning convolutional neural network.
    Yang H; Zhang J; Liu Q; Wang Y
    Biomed Eng Online; 2018 Oct; 17(1):138. PubMed ID: 30314437
    [TBL] [Abstract][Full Text] [Related]  

  • 60. 3D-Deep Learning Based Automatic Diagnosis of Alzheimer's Disease with Joint MMSE Prediction Using Resting-State fMRI.
    Duc NT; Ryu S; Qureshi MNI; Choi M; Lee KH; Lee B
    Neuroinformatics; 2020 Jan; 18(1):71-86. PubMed ID: 31093956
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 76.