These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 29705643)

  • 1. Exemplar-based inpainting as a solution to the missing wedge problem in electron tomography.
    Trampert P; Wang W; Chen D; Ravelli RBG; Dahmen T; Peters PJ; Kübel C; Slusallek P
    Ultramicroscopy; 2018 Aug; 191():1-10. PubMed ID: 29705643
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electron tomography image reconstruction using data-driven adaptive compressed sensing.
    Al-Afeef A; Cockshott WP; MacLaren I; McVitie S
    Scanning; 2016 May; 38(3):251-76. PubMed ID: 26435074
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A simple Fourier filter for suppression of the missing wedge ray artefacts in single-axis electron tomographic reconstructions.
    Kováčik L; Kereïche S; Kerïeche S; Höög JL; Jůda P; Matula P; Raška I
    J Struct Biol; 2014 Apr; 186(1):141-52. PubMed ID: 24556578
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Frequency split metal artifact reduction (FSMAR) in computed tomography.
    Meyer E; Raupach R; Lell M; Schmidt B; Kachelrieß M
    Med Phys; 2012 Apr; 39(4):1904-16. PubMed ID: 22482612
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Missing wedge computed tomography by iterative algorithm DIRECTT.
    Kupsch A; Lange A; Hentschel MP; Lück S; Schmidt V; Grothausmann R; Hilger A; Manke I
    J Microsc; 2015 Jan; 261(1):36-45. PubMed ID: 26367127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Compensation of missing wedge effects with sequential statistical reconstruction in electron tomography.
    Paavolainen L; Acar E; Tuna U; Peltonen S; Moriya T; Soonsawad P; Marjomäki V; Cheng RH; Ruotsalainen U
    PLoS One; 2014; 9(10):e108978. PubMed ID: 25279759
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On geometric artifacts in cryo electron tomography.
    Turoňová B; Marsalek L; Slusallek P
    Ultramicroscopy; 2016 Apr; 163():48-61. PubMed ID: 26916079
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Removing high contrast artifacts via digital inpainting in cryo-electron tomography: an application of compressed sensing.
    Song K; Comolli LR; Horowitz M
    J Struct Biol; 2012 May; 178(2):108-20. PubMed ID: 22248454
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Micro-CT artifacts reduction based on detector random shifting and fast data inpainting.
    Zhu Y; Zhao M; Li H; Zhang P
    Med Phys; 2013 Mar; 40(3):031114. PubMed ID: 23464294
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sub-volume averaging of repetitive structural features in angularly filtered electron tomographic reconstructions.
    Kováčik L; Kereïche S; Matula P; Raška I
    Folia Biol (Praha); 2014; 60 Suppl 1():66-70. PubMed ID: 25369344
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Simple Preparation Method for Full-Range Electron Tomography of Nanoparticles and Fine Powders.
    Padgett E; Hovden R; DaSilva JC; Levin BDA; Grazul JL; Hanrath T; Muller DA
    Microsc Microanal; 2017 Dec; 23(6):1150-1158. PubMed ID: 29224582
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A deep learning method for simultaneous denoising and missing wedge reconstruction in cryogenic electron tomography.
    Wiedemann S; Heckel R
    Nat Commun; 2024 Sep; 15(1):8255. PubMed ID: 39313517
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous motion estimation and image reconstruction (SMEIR) for 4D cone-beam CT.
    Wang J; Gu X
    Med Phys; 2013 Oct; 40(10):101912. PubMed ID: 24089914
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A modified discrete tomography for improving the reconstruction of unknown multi-gray-level material in the `missing wedge' situation.
    Liu J; Liang Z; Guan Y; Wei W; Bai H; Chen L; Liu G; Tian Y
    J Synchrotron Radiat; 2018 Nov; 25(Pt 6):1847-1859. PubMed ID: 30407198
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automated discrete electron tomography - Towards routine high-fidelity reconstruction of nanomaterials.
    Zhuge X; Jinnai H; Dunin-Borkowski RE; Migunov V; Bals S; Cool P; Bons AJ; Batenburg KJ
    Ultramicroscopy; 2017 Apr; 175():87-96. PubMed ID: 28157668
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combining scatter reduction and correction to improve image quality in cone-beam computed tomography (CBCT).
    Jin JY; Ren L; Liu Q; Kim J; Wen N; Guan H; Movsas B; Chetty IJ
    Med Phys; 2010 Nov; 37(11):5634-44. PubMed ID: 21158275
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gaussian diffusion sinogram inpainting for X-ray CT metal artifact reduction.
    Peng C; Qiu B; Li M; Guan Y; Zhang C; Wu Z; Zheng J
    Biomed Eng Online; 2017 Jan; 16(1):1. PubMed ID: 28086973
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Monte Carlo framework for missing wedge restoration and noise removal in cryo-electron tomography.
    Moebel E; Kervrann C
    J Struct Biol X; 2020; 4():100013. PubMed ID: 32647817
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ICON: 3D reconstruction with 'missing-information' restoration in biological electron tomography.
    Deng Y; Chen Y; Zhang Y; Wang S; Zhang F; Sun F
    J Struct Biol; 2016 Jul; 195(1):100-12. PubMed ID: 27079261
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional analysis of carbon nanotube networks in interconnects by electron tomography without missing wedge artifacts.
    Ke X; Bals S; Cott D; Hantschel T; Bender H; Van Tendeloo G
    Microsc Microanal; 2010 Apr; 16(2):210-7. PubMed ID: 20187989
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.