BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 29705826)

  • 1. Laparoscopic training using a quantitative assessment and instructional system.
    Yamaguchi T; Nakamura R
    Int J Comput Assist Radiol Surg; 2018 Sep; 13(9):1453-1461. PubMed ID: 29705826
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Objective skill evaluation for laparoscopic training based on motion analysis.
    Lin Z; Uemura M; Zecca M; Sessa S; Ishii H; Tomikawa M; Hashizume M; Takanishi A
    IEEE Trans Biomed Eng; 2013 Apr; 60(4):977-85. PubMed ID: 23204271
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Beyond task time: automated measurement augments fundamentals of laparoscopic skills methodology.
    Kowalewski TM; White LW; Lendvay TS; Jiang IS; Sweet R; Wright A; Hannaford B; Sinanan MN
    J Surg Res; 2014 Dec; 192(2):329-38. PubMed ID: 25108691
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Objective Assessment of Laparoscopic Force and Psychomotor Skills in a Novel Virtual Reality-Based Haptic Simulator.
    Prasad MS; Manivannan M; Manoharan G; Chandramohan SM
    J Surg Educ; 2016; 73(5):858-69. PubMed ID: 27267563
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensor fusion for laparoscopic surgery skill acquisition.
    Anderson F; Birch DW; Boulanger P; Bischof WF
    Comput Aided Surg; 2012; 17(6):269-83. PubMed ID: 23098188
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accelerometer Measurement of Head Movement During Laparoscopic Surgery as a Tool to Evaluate Skill Development of Surgeons.
    Viriyasiripong S; Lopez A; Mandava SH; Lai WR; Mitchell GC; Boonjindasup A; Powers MK; Silberstein JL; Lee BR
    J Surg Educ; 2016; 73(4):589-94. PubMed ID: 26923103
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Markov modeling of minimally invasive surgery based on tool/tissue interaction and force/torque signatures for evaluating surgical skills.
    Rosen J; Hannaford B; Richards CG; Sinanan MN
    IEEE Trans Biomed Eng; 2001 May; 48(5):579-91. PubMed ID: 11341532
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D Autonomous Surgeon's Hand Movement Assessment Using a Cascaded Fuzzy Supervisor in Multi-Thread Video Processing.
    Rashidi Fathabadi F; Grantner JL; Shebrain SA; Abdel-Qader I
    Sensors (Basel); 2023 Feb; 23(5):. PubMed ID: 36904830
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Take-Home Training in Laparoscopy.
    Thinggaard E
    Dan Med J; 2017 Apr; 64(4):. PubMed ID: 28385174
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single-session baseline virtual reality simulator scores predict technical performance for laparoscopic colectomy: a study in the swine model.
    Araujo SE; Seid VE; Bertoncini AB; Horcel LA; Nahas SC; Cecconello I
    J Surg Educ; 2014; 71(6):883-91. PubMed ID: 24994032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effective home laparoscopic simulation training: a preliminary evaluation of an improved training paradigm.
    Korndorffer JR; Bellows CF; Tekian A; Harris IB; Downing SM
    Am J Surg; 2012 Jan; 203(1):1-7. PubMed ID: 22172481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Objective laparoscopic skills assessments of surgical residents using Hidden Markov Models based on haptic information and tool/tissue interactions.
    Rosen J; Solazzo M; Hannaford B; Sinanan M
    Stud Health Technol Inform; 2001; 81():417-23. PubMed ID: 11317782
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a web-based laparoscopic technical skills assessment and testing instrument: a pilot study.
    Rudderow J; Bansal J; Wearne S; Lara-Torre E; Paget C; Ferrara J
    J Surg Educ; 2014; 71(6):e73-8. PubMed ID: 25127452
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a Model for the Acquisition and Assessment of Advanced Laparoscopic Suturing Skills Using an Automated Device.
    Bilgic E; Takao M; Kaneva P; Endo S; Takao T; Watanabe Y; McKendy KM; Feldman LS; Vassiliou MC
    Surg Innov; 2018 Jun; 25(3):286-290. PubMed ID: 29557252
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Does rating the operation videos with a checklist score improve the effect of E-learning for bariatric surgical training? Study protocol for a randomized controlled trial.
    De La Garza JR; Kowalewski KF; Friedrich M; Schmidt MW; Bruckner T; Kenngott HG; Fischer L; Müller-Stich BP; Nickel F
    Trials; 2017 Mar; 18(1):134. PubMed ID: 28327195
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Training program for fundamental surgical skill in robotic laparoscopic surgery.
    Suh I; Mukherjee M; Oleynikov D; Siu KC
    Int J Med Robot; 2011 Sep; 7(3):327-33. PubMed ID: 21688381
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Haptic laparoscopic skills trainer with practical user evaluation metrics.
    Acosta E; Temkin B
    Stud Health Technol Inform; 2005; 111():8-11. PubMed ID: 15718689
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Procedural surgical skill assessment in laparoscopic training environments.
    Uemura M; Jannin P; Yamashita M; Tomikawa M; Akahoshi T; Obata S; Souzaki R; Ieiri S; Hashizume M
    Int J Comput Assist Radiol Surg; 2016 Apr; 11(4):543-52. PubMed ID: 26253582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Training on a virtual reality simulator--is it really possible a correct evaluation of the surgeons' experience?
    Moldovanu R; Târcoveanu E; Lupaşcu C; Dimofte G; Filip V; Vlad N; Vasilescu A
    Rev Med Chir Soc Med Nat Iasi; 2009; 113(3):780-7. PubMed ID: 20191832
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Initial experience using a robotic-driven laparoscopic needle holder with ergonomic handle: assessment of surgeons' task performance and ergonomics.
    Sánchez-Margallo JA; Sánchez-Margallo FM
    Int J Comput Assist Radiol Surg; 2017 Dec; 12(12):2069-2077. PubMed ID: 28695479
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.