These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
240 related articles for article (PubMed ID: 29705884)
21. An in vitro approach to detect metabolite toxicity due to CYP3A4-dependent bioactivation of xenobiotics. Vignati L; Turlizzi E; Monaci S; Grossi P; Kanter Rd; Monshouwer M Toxicology; 2005 Dec; 216(2-3):154-67. PubMed ID: 16169652 [TBL] [Abstract][Full Text] [Related]
22. Evaluation of food-relevant chemicals in the ToxCast high-throughput screening program. Karmaus AL; Filer DL; Martin MT; Houck KA Food Chem Toxicol; 2016 Jun; 92():188-96. PubMed ID: 27103583 [TBL] [Abstract][Full Text] [Related]
23. Predictive modeling of chemical hazard by integrating numerical descriptors of chemical structures and short-term toxicity assay data. Rusyn I; Sedykh A; Low Y; Guyton KZ; Tropsha A Toxicol Sci; 2012 May; 127(1):1-9. PubMed ID: 22387746 [TBL] [Abstract][Full Text] [Related]
24. Subacute cytotoxicity testing with cultured human lung cells. Yang A; Cardona DL; Barile FA Toxicol In Vitro; 2002 Feb; 16(1):33-9. PubMed ID: 11812637 [TBL] [Abstract][Full Text] [Related]
25. Evaluation of novel high-throughput embryonic stem cell tests with new molecular markers for screening embryotoxic chemicals in vitro. Suzuki N; Ando S; Yamashita N; Horie N; Saito K Toxicol Sci; 2011 Dec; 124(2):460-71. PubMed ID: 21964422 [TBL] [Abstract][Full Text] [Related]
26. Mechanism-Driven Read-Across of Chemical Hepatotoxicants Based on Chemical Structures and Biological Data. Zhao L; Russo DP; Wang W; Aleksunes LM; Zhu H Toxicol Sci; 2020 Apr; 174(2):178-188. PubMed ID: 32073637 [TBL] [Abstract][Full Text] [Related]
27. Application of a high-content multiparameter cytotoxicity assay to prioritize compounds based on toxicity potential in humans. Abraham VC; Towne DL; Waring JF; Warrior U; Burns DJ J Biomol Screen; 2008 Jul; 13(6):527-37. PubMed ID: 18566484 [TBL] [Abstract][Full Text] [Related]
28. Testing for developmental neurotoxicity using a battery of in vitro assays for key cellular events in neurodevelopment. Harrill JA; Freudenrich T; Wallace K; Ball K; Shafer TJ; Mundy WR Toxicol Appl Pharmacol; 2018 Sep; 354():24-39. PubMed ID: 29626487 [TBL] [Abstract][Full Text] [Related]
29. In vitro testing for direct immunotoxicity: state of the art. Lankveld DP; Van Loveren H; Baken KA; Vandebriel RJ Methods Mol Biol; 2010; 598():401-23. PubMed ID: 19967527 [TBL] [Abstract][Full Text] [Related]
30. Use and validation of HT/HC assays to support 21st century toxicity evaluations. Patlewicz G; Simon T; Goyak K; Phillips RD; Rowlands JC; Seidel SD; Becker RA Regul Toxicol Pharmacol; 2013 Mar; 65(2):259-68. PubMed ID: 23291301 [TBL] [Abstract][Full Text] [Related]
31. Predictive Models for Human Organ Toxicity Based on Xu T; Ngan DK; Ye L; Xia M; Xie HQ; Zhao B; Simeonov A; Huang R Chem Res Toxicol; 2020 Mar; 33(3):731-741. PubMed ID: 32077278 [TBL] [Abstract][Full Text] [Related]
32. Economic benefits of using adaptive predictive models of reproductive toxicity in the context of a tiered testing program. Martin MT; Knudsen TB; Judson RS; Kavlock RJ; Dix DJ Syst Biol Reprod Med; 2012 Feb; 58(1):3-9. PubMed ID: 22239076 [TBL] [Abstract][Full Text] [Related]
33. Toxicity profiles of four metals and 17 xenobiotics in the human hepatoma cell line HepG2 and the protozoa Tetrahymena pyriformis--a comparison. Rudzok S; KrejĨi S; Graebsch C; Herbarth O; Mueller A; Bauer M Environ Toxicol; 2011 Apr; 26(2):171-86. PubMed ID: 19790250 [TBL] [Abstract][Full Text] [Related]
34. A Protocol for In Vitro High-Throughput Chemical Susceptibility Screening in Differentiating NT2 Stem Cells. Menzner AK; Gilbert DF Methods Mol Biol; 2017; 1601():61-70. PubMed ID: 28470517 [TBL] [Abstract][Full Text] [Related]
35. Metabolic enzyme microarray coupled with miniaturized cell-culture array technology for high-throughput toxicity screening. Lee MY; Dordick JS; Clark DS Methods Mol Biol; 2010; 632():221-37. PubMed ID: 20217581 [TBL] [Abstract][Full Text] [Related]
36. Identifying contact-mediated, localized toxic effects of MWCNT aggregates on epithelial monolayers: a single-cell monitoring toxicity assay. Rotoli BM; Gatti R; Movia D; Bianchi MG; Di Cristo L; Fenoglio I; Sonvico F; Bergamaschi E; Prina-Mello A; Bussolati O Nanotoxicology; 2015 Mar; 9(2):230-41. PubMed ID: 24873759 [TBL] [Abstract][Full Text] [Related]
37. Analysis of Pfizer compounds in EPA's ToxCast chemicals-assay space. Shah F; Greene N Chem Res Toxicol; 2014 Jan; 27(1):86-98. PubMed ID: 24328225 [TBL] [Abstract][Full Text] [Related]
38. Comparison of chemical-induced changes in proliferation and apoptosis in human and mouse neuroprogenitor cells. Culbreth ME; Harrill JA; Freudenrich TM; Mundy WR; Shafer TJ Neurotoxicology; 2012 Dec; 33(6):1499-1510. PubMed ID: 22634143 [TBL] [Abstract][Full Text] [Related]
39. Strengths and limitations of using repeat-dose toxicity studies to predict effects on fertility. Dent MP Regul Toxicol Pharmacol; 2007 Aug; 48(3):241-58. PubMed ID: 17512650 [TBL] [Abstract][Full Text] [Related]
40. In vitro toxicity assay using human bronchial epithelial cell, Beas-2B, for the screening of toxicological risk of dioxin-like compounds sampled from small sized Korean waste incineration plants. Ha MH; Ham SY; Lee DH; Choi J Chemosphere; 2007 Nov; 70(1):20-8. PubMed ID: 17850846 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]