These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

805 related articles for article (PubMed ID: 29706480)

  • 21. Environmental impact of spent lithium ion batteries and green recycling perspectives by organic acids - A review.
    Meshram P; Mishra A; Abhilash ; Sahu R
    Chemosphere; 2020 Mar; 242():125291. PubMed ID: 31896181
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Recovery of lithium and cobalt from waste lithium ion batteries of mobile phone.
    Jha MK; Kumari A; Jha AK; Kumar V; Hait J; Pandey BD
    Waste Manag; 2013 Sep; 33(9):1890-7. PubMed ID: 23773705
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A review on the recycling of spent lithium-ion batteries (LIBs) by the bioleaching approach.
    Roy JJ; Cao B; Madhavi S
    Chemosphere; 2021 Nov; 282():130944. PubMed ID: 34087562
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Recovery of valuable metals from LiNi
    Zhuang L; Sun C; Zhou T; Li H; Dai A
    Waste Manag; 2019 Feb; 85():175-185. PubMed ID: 30803570
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recovery of lithium and copper from anode electrode materials of spent LIBs by acidic leaching.
    Agarwal S; Dhiman S; Gupta H
    Environ Sci Pollut Res Int; 2024 May; 31(23):34249-34257. PubMed ID: 38700765
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Recovery of valuable metals from mixed types of spent lithium ion batteries. Part II: Selective extraction of lithium.
    Chen X; Cao L; Kang D; Li J; Zhou T; Ma H
    Waste Manag; 2018 Oct; 80():198-210. PubMed ID: 30455000
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A process for combination of recycling lithium and regenerating graphite from spent lithium-ion battery.
    Yang Y; Song S; Lei S; Sun W; Hou H; Jiang F; Ji X; Zhao W; Hu Y
    Waste Manag; 2019 Feb; 85():529-537. PubMed ID: 30803608
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Novel Recycling Route for Spent Li-Ion Batteries.
    Pinna EG; Toro N; Gallegos S; Rodriguez MH
    Materials (Basel); 2021 Dec; 15(1):. PubMed ID: 35009191
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recovery of cathode materials and Al from spent lithium-ion batteries by ultrasonic cleaning.
    He LP; Sun SY; Song XF; Yu JG
    Waste Manag; 2015 Dec; 46():523-8. PubMed ID: 26323202
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A feasible process for recycling valuable metals from LiNi
    Liu DY; Sun SN; Li DY
    Environ Technol; 2024 Jun; 45(16):3189-3201. PubMed ID: 37158845
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reaction mechanism of antibiotic bacteria residues as a green reductant for highly efficient recycling of spent lithium-ion batteries.
    Ma Y; Zhou X; Tang J; Liu X; Gan H; Yang J
    J Hazard Mater; 2021 Sep; 417():126032. PubMed ID: 33992020
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Subcritical Water Extraction of Valuable Metals from Spent Lithium-Ion Batteries.
    Lie J; Tanda S; Liu JC
    Molecules; 2020 May; 25(9):. PubMed ID: 32384592
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Recycling of spent lithium-ion battery with polyvinyl chloride by mechanochemical process.
    Wang MM; Zhang CC; Zhang FS
    Waste Manag; 2017 Sep; 67():232-239. PubMed ID: 28502601
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Countercurrent leaching of Ni, Co, Mn, and Li from spent lithium-ion batteries.
    Jian Y; Yanqing L; Fangyang L; Ming J; Liangxing J
    Waste Manag Res; 2020 Dec; 38(12):1358-1366. PubMed ID: 32720588
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Environmental friendly leaching reagent for cobalt and lithium recovery from spent lithium-ion batteries.
    Li L; Ge J; Chen R; Wu F; Chen S; Zhang X
    Waste Manag; 2010 Dec; 30(12):2615-21. PubMed ID: 20817431
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reduction-ammoniacal leaching to recycle lithium, cobalt, and nickel from spent lithium-ion batteries with a hydrothermal method: Effect of reductants and ammonium salts.
    Wang S; Wang C; Lai F; Yan F; Zhang Z
    Waste Manag; 2020 Feb; 102():122-130. PubMed ID: 31671359
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rapid extraction of valuable metals from spent LiNi
    Zhang J; Hu X; He T; Yuan X; Li X; Shi H; Yang L; Shao P; Wang C; Luo X
    Waste Manag; 2023 Jun; 165():19-26. PubMed ID: 37075685
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Extraction of Li and Co from industrially produced Li-ion battery waste - Using the reductive power of waste itself.
    Peng C; Liu F; Aji AT; Wilson BP; Lundström M
    Waste Manag; 2019 Jul; 95():604-611. PubMed ID: 31351647
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Recovery of valuable metals from cathodic active material of spent lithium ion batteries: Leaching and kinetic aspects.
    Meshram P; Pandey BD; Mankhand TR
    Waste Manag; 2015 Nov; 45():306-13. PubMed ID: 26087645
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Glucose oxidase-based biocatalytic acid-leaching process for recovering valuable metals from spent lithium-ion batteries.
    Fan E; Shi P; Zhang X; Lin J; Wu F; Li L; Chen R
    Waste Manag; 2020 Aug; 114():166-173. PubMed ID: 32679474
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 41.