These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
286 related articles for article (PubMed ID: 29706804)
1. Building a potential wetland restoration indicator for the contiguous United States. Horvath EK; Christensen JR; Mehaffey MH; Neale AC Ecol Indic; 2017; 83():462-473. PubMed ID: 29706804 [TBL] [Abstract][Full Text] [Related]
2. Advancements in mapping areas suitable for wetland habitats across the conterminous United States. Krohmer L; Heetderks E; Baynes J; Neale A Sci Total Environ; 2024 Nov; 949():175058. PubMed ID: 39084381 [TBL] [Abstract][Full Text] [Related]
3. Wetland types and wetland maps differ in ability to predict dissolved organic carbon concentrations in streams. Johnston CA; Shmagin BA; Frost PC; Cherrier C; Larson JH; Lamberti GA; Bridgham SD Sci Total Environ; 2008 Oct; 404(2-3):326-34. PubMed ID: 18054999 [TBL] [Abstract][Full Text] [Related]
4. Simulated wetland conservation-restoration effects on water quantity and quality at watershed scale. Wang X; Shang S; Qu Z; Liu T; Melesse AM; Yang W J Environ Manage; 2010 Jul; 91(7):1511-25. PubMed ID: 20236754 [TBL] [Abstract][Full Text] [Related]
5. What would have been the impacts of wetlands on low flow support and high flow attenuation under steady state land cover conditions? Blanchette M; Rousseau AN; Foulon É; Savary S; Poulin M J Environ Manage; 2019 Mar; 234():448-457. PubMed ID: 30640170 [TBL] [Abstract][Full Text] [Related]
6. Modelling hydrological effects of wetland restoration: a differentiated view. Staes J; Rubarenzya MH; Meire P; Willems P Water Sci Technol; 2009; 59(3):433-41. PubMed ID: 19213997 [TBL] [Abstract][Full Text] [Related]
7. Maximizing US nitrate removal through wetland protection and restoration. Cheng FY; Van Meter KJ; Byrnes DK; Basu NB Nature; 2020 Dec; 588(7839):625-630. PubMed ID: 33328640 [TBL] [Abstract][Full Text] [Related]
8. Forward-looking farmers owning multiple potential wetland restoration sites: implications for efficient restoration. Schroder Kushch S; Lang Z; Rabotyagov S Environ Manage; 2018 Apr; 61(4):577-596. PubMed ID: 29460238 [TBL] [Abstract][Full Text] [Related]
9. Integrating objectives and scales for planning and implementing wetland restoration and creation in agricultural landscapes. Moreno-Mateos D; Comin FA J Environ Manage; 2010 Nov; 91(11):2087-95. PubMed ID: 20580153 [TBL] [Abstract][Full Text] [Related]
10. Quantifying hydrologic controls on local- and landscape-scale indicators of coastal wetland loss. Stagg CL; Osland MJ; Moon JA; Hall CT; Feher LC; Jones WR; Couvillion BR; Hartley SB; Vervaeke WC Ann Bot; 2020 Feb; 125(2):365-376. PubMed ID: 31532484 [TBL] [Abstract][Full Text] [Related]
11. Wetland features and landscape context predict the risk of wetland habitat loss. Gutzwiller KJ; Flather CH Ecol Appl; 2011 Apr; 21(3):968-82. PubMed ID: 21639059 [TBL] [Abstract][Full Text] [Related]
12. Differential assessment of designations of wetland status using two delineation methods. Wu M; Kalma D; Treadwell-Steitz C Environ Manage; 2014 Jul; 54(1):23-9. PubMed ID: 24748237 [TBL] [Abstract][Full Text] [Related]
13. A new approach for hydrologic performance standards in wetland mitigation. Sueltenfuss JP; Cooper DJ J Environ Manage; 2019 Feb; 231():1154-1163. PubMed ID: 30602240 [TBL] [Abstract][Full Text] [Related]
14. Headwater streams and inland wetlands: Status and advancements of geospatial datasets and maps across the United States. Christensen JR; Golden HE; Alexander LC; Pickard BR; Fritz KM; Lane CR; Weber MH; Kwok RM; Keefer MN Earth Sci Rev; 2022 Dec; 235():1-24. PubMed ID: 36970305 [TBL] [Abstract][Full Text] [Related]
15. Planning for the wetland restoration potential based on the viability of the seed bank and the land-use change trajectory in the Sanjiang Plain of China. Shi S; Chang Y; Wang G; Li Z; Hu Y; Liu M; Li Y; Li B; Zong M; Huang W Sci Total Environ; 2020 Sep; 733():139208. PubMed ID: 32446061 [TBL] [Abstract][Full Text] [Related]
16. Using ecotechnology to address water quality and wetland habitat loss problems in the Mississippi basin: a hierarchical approach. Day JW; Yañéz Arancibia A; Mitsch WJ; Lara-Dominguez AL; Day JN; Ko JY; Lane R; Lindsey J; Lomeli DZ Biotechnol Adv; 2003 Dec; 22(1-2):135-59. PubMed ID: 14623048 [TBL] [Abstract][Full Text] [Related]
17. Evaluating the significance of wetland restoration scenarios on phosphorus removal. Daneshvar F; Nejadhashemi AP; Adhikari U; Elahi B; Abouali M; Herman MR; Martinez-Martinez E; Calappi TJ; Rohn BG J Environ Manage; 2017 May; 192():184-196. PubMed ID: 28160646 [TBL] [Abstract][Full Text] [Related]
18. Assessing the cumulative impacts of geographically isolated wetlands on watershed hydrology using the SWAT model coupled with improved wetland modules. Lee S; Yeo IY; Lang MW; Sadeghi AM; McCarty GW; Moglen GE; Evenson GR J Environ Manage; 2018 Oct; 223():37-48. PubMed ID: 29886149 [TBL] [Abstract][Full Text] [Related]
19. Characterizing nonnative plants in wetlands across the conterminous United States. Magee TK; Blocksom KA; Herlihy AT; Nahlik AM Environ Monit Assess; 2019 Jun; 191(Suppl 1):344. PubMed ID: 31222487 [TBL] [Abstract][Full Text] [Related]
20. Impacts of human-induced environmental change in wetlands on aquatic animals. Sievers M; Hale R; Parris KM; Swearer SE Biol Rev Camb Philos Soc; 2018 Feb; 93(1):529-554. PubMed ID: 28929570 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]