BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 29706937)

  • 21. Effect of alkyl side chain location and cyclicity on the aerobic biotransformation of naphthenic acids.
    Misiti TM; Tezel U; Pavlostathis SG
    Environ Sci Technol; 2014 Jul; 48(14):7909-17. PubMed ID: 24941126
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chloroform aerobic cometabolism by butane-growing Rhodococcus aetherovorans BCP1 in continuous-flow biofilm reactors.
    Ciavarelli R; Cappelletti M; Fedi S; Pinelli D; Frascari D
    Bioprocess Biosyst Eng; 2012 Jun; 35(5):667-81. PubMed ID: 22042557
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Application of UV-irradiated Fe(III)-nitrilotriacetic acid (UV-Fe(III)NTA) and UV-NTA-Fenton systems to degrade model and natural occurring naphthenic acids.
    Zhang Y; Chelme-Ayala P; Klamerth N; Gamal El-Din M
    Chemosphere; 2017 Jul; 179():359-366. PubMed ID: 28388447
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Aerobic biotransformation potential of a commercial mixture of naphthenic acids.
    Misiti TM; Tezel U; Tandukar M; Pavlostathis SG
    Water Res; 2013 Oct; 47(15):5520-34. PubMed ID: 23863388
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Naphthenic acids and surrogate naphthenic acids in methanogenic microcosms.
    Holowenko FM; Mackinnon MD; Fedorak PM
    Water Res; 2001 Aug; 35(11):2595-606. PubMed ID: 11456157
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 1,4-Dioxane degradation characteristics of Rhodococcus aetherivorans JCM 14343.
    Inoue D; Tsunoda T; Yamamoto N; Ike M; Sei K
    Biodegradation; 2018 Jun; 29(3):301-310. PubMed ID: 29696449
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Oil sands process affected water sourced Trichoderma harzianum demonstrates capacity for mycoremediation of naphthenic acid fraction compounds.
    Miles SM; Asiedu E; Balaberda AL; Ulrich AC
    Chemosphere; 2020 Nov; 258():127281. PubMed ID: 32540545
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Harnessing oil sands microbial communities for use in ex situ naphthenic acid bioremediation.
    Demeter MA; Lemire J; George I; Yue G; Ceri H; Turner RJ
    Chemosphere; 2014 Feb; 97():78-85. PubMed ID: 24325800
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Profiling of individual naphthenic acids at a composite tailings reclamation fen by comprehensive two-dimensional gas chromatography-mass spectrometry.
    Bowman DT; Warren LA; McCarry BE; Slater GF
    Sci Total Environ; 2019 Feb; 649():1522-1531. PubMed ID: 30308920
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A novel degradation mechanism of naphthenic acids by marine Pseudoalteromonas sp.
    Zan S; Wang J; Wang F; Li Z; Du M; Cai Y
    J Hazard Mater; 2022 Feb; 424(Pt B):127534. PubMed ID: 34879524
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Degradation of naphthenic acids by sediment micro-organisms.
    Del Rio LF; Hadwin AK; Pinto LJ; MacKinnon MD; Moore MM
    J Appl Microbiol; 2006 Nov; 101(5):1049-61. PubMed ID: 17040229
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effect of oil sands process-affected water and naphthenic acids on the germination and development of Arabidopsis.
    Leishman C; Widdup EE; Quesnel DM; Chua G; Gieg LM; Samuel MA; Muench DG
    Chemosphere; 2013 Sep; 93(2):380-7. PubMed ID: 23746390
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Degradation of a mixture of hydrocarbons, gasoline, and diesel oil additives by Rhodococcus aetherivorans and Rhodococcus wratislaviensis.
    Auffret M; Labbé D; Thouand G; Greer CW; Fayolle-Guichard F
    Appl Environ Microbiol; 2009 Dec; 75(24):7774-82. PubMed ID: 19837842
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluating in situ biodegradation of
    Ahad JME; Pakdel H; Gammon PR; Siddique T; Kuznetsova A; Savard MM
    Sci Total Environ; 2018 Dec; 643():392-399. PubMed ID: 29940450
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cyclohexanecarboxylic acid degradation with simultaneous nitrate removal by Marinobacter sp. SJ18.
    Zan S; Wang J; Fan J; Jin Y; Li Z; Du M
    Environ Sci Pollut Res Int; 2023 Mar; 30(12):34296-34305. PubMed ID: 36512278
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of naphthenic acids in oil sands wastewaters by gas chromatography-mass spectrometry.
    Holowenko FM; MacKinnon MD; Fedorak PM
    Water Res; 2002 Jun; 36(11):2843-55. PubMed ID: 12146873
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Degradation of recalcitrant naphthenic acids from raw and ozonated oil sands process-affected waters by a semi-passive biofiltration process.
    Zhang L; Zhang Y; Gamal El-Din M
    Water Res; 2018 Apr; 133():310-318. PubMed ID: 29407712
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Analysis of naphthenic acid mixtures as pentafluorobenzyl derivatives by gas chromatography-electron impact mass spectrometry.
    Gutierrez-Villagomez JM; Vázquez-Martínez J; Ramírez-Chávez E; Molina-Torres J; Trudeau VL
    Talanta; 2017 Jan; 162():440-452. PubMed ID: 27837854
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evaluation of negative effect of Naphthenic acids (NAs) on physiological metabolism and polycyclic aromatic hydrocarbons adsorption of Phragmites australis.
    Jia H; Zhang GX; Wu YF; Dai WW; Xu QB; Gan S; Ju XY; Feng ZZ; Li RP; Yuan B
    Chemosphere; 2023 Mar; 318():137909. PubMed ID: 36681195
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Naphthenic acids in athabasca oil sands tailings waters are less biodegradable than commercial naphthenic acids.
    Scott AC; MacKinnon MD; Fedorak PM
    Environ Sci Technol; 2005 Nov; 39(21):8388-94. PubMed ID: 16294878
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.