These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 29706937)

  • 41. Naphthenic acid biodegradation by the unicellular alga Dunaliella tertiolecta.
    Quesnel DM; Bhaskar IM; Gieg LM; Chua G
    Chemosphere; 2011 Jul; 84(4):504-11. PubMed ID: 21459409
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Removal and toxicity reduction of naphthenic acids by ozonation and combined ozonation-aerobic biodegradation.
    Vaiopoulou E; Misiti TM; Pavlostathis SG
    Bioresour Technol; 2015 Mar; 179():339-347. PubMed ID: 25553564
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effects of environmental conditions on aerobic degradation of a commercial naphthenic acid.
    Kinley CM; Gaspari DP; McQueen AD; Rodgers JH; Castle JW; Friesen V; Haakensen M
    Chemosphere; 2016 Oct; 161():491-500. PubMed ID: 27459161
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Characterization and pattern recognition of oil-sand naphthenic acids using comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry.
    Hao C; Headley JV; Peru KM; Frank R; Yang P; Solomon KR
    J Chromatogr A; 2005 Mar; 1067(1-2):277-84. PubMed ID: 15844533
    [TBL] [Abstract][Full Text] [Related]  

  • 45. In vivo endocrine effects of naphthenic acids in fish.
    Knag AC; Sebire M; Mayer I; Meier S; Renner P; Katsiadaki I
    Chemosphere; 2013 Nov; 93(10):2356-64. PubMed ID: 24034895
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Bioconversion of lignin model compounds with oleaginous Rhodococci.
    Kosa M; Ragauskas AJ
    Appl Microbiol Biotechnol; 2012 Jan; 93(2):891-900. PubMed ID: 22159607
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effect of aromatic compounds on cellular fatty acid composition of Rhodococcus opacus.
    Tsitko IV; Zaitsev GM; Lobanok AG; Salkinoja-Salonen MS
    Appl Environ Microbiol; 1999 Feb; 65(2):853-5. PubMed ID: 9925629
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effects of alkyl chain branching on the biotransformation of naphthenic acids.
    Smith BE; Lewis CA; Belt ST; Whitby C; Rowland SJ
    Environ Sci Technol; 2008 Dec; 42(24):9323-8. PubMed ID: 19174911
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Biodegradation and detoxification of naphthenic acids in oil sands process affected waters.
    Yue S; Ramsay BA; Wang J; Ramsay JA
    Sci Total Environ; 2016 Dec; 572():273-279. PubMed ID: 27501426
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Degradation Process of Exogenous Naphthenic Acids and Their Effects on Microbial Community Structure in Soil].
    Liu YQ; Zhao YR; Liu MJ; Fan H; Huang Y
    Huan Jing Ke Xue; 2017 Nov; 38(11):4756-4762. PubMed ID: 29965421
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Genome-scale metabolic model of Rhodococcus jostii RHA1 (iMT1174) to study the accumulation of storage compounds during nitrogen-limited condition.
    Tajparast M; Frigon D
    BMC Syst Biol; 2015 Aug; 9():43. PubMed ID: 26248853
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Influence of molecular structure on the biodegradability of naphthenic acids.
    Han X; Scott AC; Fedorak PM; Bataineh M; Martin JW
    Environ Sci Technol; 2008 Feb; 42(4):1290-5. PubMed ID: 18351107
    [TBL] [Abstract][Full Text] [Related]  

  • 54. 1,4-Dioxane degradation potential of members of the genera Pseudonocardia and Rhodococcus.
    Inoue D; Tsunoda T; Sawada K; Yamamoto N; Saito Y; Sei K; Ike M
    Biodegradation; 2016 Nov; 27(4-6):277-286. PubMed ID: 27623820
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Detection of naphthenic acid uptake into root and shoot tissues indicates a direct role for plants in the remediation of oil sands process-affected water.
    Alberts ME; Wong J; Hindle R; Degenhardt D; Krygier R; Turner RJ; Muench DG
    Sci Total Environ; 2021 Nov; 795():148857. PubMed ID: 34328940
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Naphthenic acids and other acid-extractables in water samples from Alberta: what is being measured?
    Grewer DM; Young RF; Whittal RM; Fedorak PM
    Sci Total Environ; 2010 Nov; 408(23):5997-6010. PubMed ID: 20825979
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Selective biodegradation of naphthenic acids and a probable link between mixture profiles and aquatic toxicity.
    Toor NS; Han X; Franz E; MacKinnon MD; Martin JW; Liber K
    Environ Toxicol Chem; 2013 Oct; 32(10):2207-16. PubMed ID: 23733718
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Production of triacylglycerol and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by the toluene-degrading bacterium Rhodococcus aetherivorans IAR1.
    Hori K; Abe M; Unno H
    J Biosci Bioeng; 2009 Oct; 108(4):319-24. PubMed ID: 19716522
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Anaerobic biodegradation of surrogate naphthenic acids.
    Clothier LN; Gieg LM
    Water Res; 2016 Mar; 90():156-166. PubMed ID: 26724449
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Rhodococcus opacus expresses the xsc gene to utilize taurine as a carbon source or as a nitrogen source but not as a sulfur source.
    Denger K; Ruff J; Schleheck D; Cook AM
    Microbiology (Reading); 2004 Jun; 150(Pt 6):1859-1867. PubMed ID: 15184572
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.