BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 29707727)

  • 1. Foam flow in a model porous medium: II. The effect of trapped gas.
    Jones SA; Getrouw N; Vincent-Bonnieu S
    Soft Matter; 2018 May; 14(18):3497-3503. PubMed ID: 29707727
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of foam flow in a 3D printed porous medium in the presence of oil.
    Osei-Bonsu K; Grassia P; Shokri N
    J Colloid Interface Sci; 2017 Mar; 490():850-858. PubMed ID: 28002773
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bubble-particle dynamics in multiphase flow of capillary foams in a porous micromodel.
    Okesanjo O; Aubry G; Behrens S; Lu H; Meredith JC
    Lab Chip; 2023 Oct; 23(20):4434-4444. PubMed ID: 37740290
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of oil removal in surfactant alternating gas with water alternating gas, water flooding and gas flooding in secondary oil recovery process.
    Salehi MM; Safarzadeh MA; Sahraei E; Nejad SA
    J Pet Sci Eng; 2014 Aug; 120():86-93. PubMed ID: 26594096
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visualizing oil displacement with foam in a microfluidic device with permeability contrast.
    Conn CA; Ma K; Hirasaki GJ; Biswal SL
    Lab Chip; 2014 Oct; 14(20):3968-77. PubMed ID: 25112724
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of gas type on foam film permeability and its implications for foam flow in porous media.
    Farajzadeh R; Muruganathan RM; Rossen WR; Krastev R
    Adv Colloid Interface Sci; 2011 Oct; 168(1-2):71-8. PubMed ID: 21496785
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Foam formation during drainage of a surfactant solution in a microfluidic porous medium model.
    Lima N; Parsa S; Paciornik S; Carvalho MS
    Sci Rep; 2023 Dec; 13(1):21802. PubMed ID: 38071214
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fundamental investigation of foam flow in a liquid-filled Hele-Shaw cell.
    Osei-Bonsu K; Shokri N; Grassia P
    J Colloid Interface Sci; 2016 Jan; 462():288-96. PubMed ID: 26473278
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coreflood Study of Effect of Surfactant Concentration on Foam Generation in Porous Media.
    Yu G; Rossen WR; Vincent-Bonnieu S
    Ind Eng Chem Res; 2019 Jan; 58(1):420-427. PubMed ID: 30774192
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic Behaviors and Mechanisms of Air-Foam Flooding at High Pressure and Reservoir Temperature via Microfluidic Experiments.
    Li D; Xin G; Ren S
    ACS Omega; 2022 Oct; 7(41):36503-36509. PubMed ID: 36278066
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Foam flow in a model porous medium: I. The effect of foam coarsening.
    Jones SA; Getrouw N; Vincent-Bonnieu S
    Soft Matter; 2018 May; 14(18):3490-3496. PubMed ID: 29392252
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical study of the mechanisms of nano-assisted foam flooding in porous media as an alternative to gas flooding.
    Bello A; Dorhjie DB; Ivanova A; Cheremisin A; Ilyasov I; Cheremisin A
    Heliyon; 2024 Mar; 10(5):e26689. PubMed ID: 38434408
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A micromodel analysis of factors influencing NAPL removal by surfactant foam flooding.
    Jeong SW; Corapcioglu MY
    J Contam Hydrol; 2003 Jan; 60(1-2):77-96. PubMed ID: 12498575
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic Investigation of Foam Coarsening Dynamics in Porous Media at High-Pressure and High-Temperature Conditions.
    Yu W; Zhou X; Kanj MY
    Langmuir; 2022 Mar; 38(9):2895-2905. PubMed ID: 35192368
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Creation of a dual-porosity and dual-depth micromodel for the study of multiphase flow in complex porous media.
    Yun W; Ross CM; Roman S; Kovscek AR
    Lab Chip; 2017 Apr; 17(8):1462-1474. PubMed ID: 28294224
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Foam trapping in a 3D porous medium: in situ observations by ultra-fast X-ray microtomography.
    Poryles R; Gland N; King A; Rosenberg E; Barré L; Chevalier T
    Soft Matter; 2020 Jul; 16(27):6354-6361. PubMed ID: 32568356
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Etched glass micromodel for laboratory simulation of NAPL recovery mechanisms by surfactant solutions in fractured rock.
    Martel R; Portois C; Robert T; Uyeda M
    J Contam Hydrol; 2019 Dec; 227():103550. PubMed ID: 31493908
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measuring in-situ capillary pressure of a flowing foam system in porous media.
    Vavra E; Puerto M; Bai C; Ma K; Mateen K; Biswal L; Hirasaki G
    J Colloid Interface Sci; 2022 Sep; 621():321-330. PubMed ID: 35462174
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pore-level mechanics of foam generation and coalescence in the presence of oil.
    Almajid MM; Kovscek AR
    Adv Colloid Interface Sci; 2016 Jul; 233():65-82. PubMed ID: 26548502
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of Foam Microbubbles on Electrical Resistivity and Capillary Pressure of Partially Saturated Porous Media.
    R Adebayo A; Isah A; Mahmoud M; Al-Shehri D
    Molecules; 2020 Jul; 25(15):. PubMed ID: 32722602
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.