These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 29707940)

  • 1. O-O Radical Coupling: From Detailed Mechanistic Understanding to Enhanced Water Oxidation Catalysis.
    Xie Y; Shaffer DW; Concepcion JJ
    Inorg Chem; 2018 Sep; 57(17):10533-10542. PubMed ID: 29707940
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational comparison of Ru(bda)(py)
    Li G; Ahlquist MSG
    Dalton Trans; 2022 Jun; 51(22):8618-8624. PubMed ID: 35593410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insights into Ru-based molecular water oxidation catalysts: electronic and noncovalent-interaction effects on their catalytic activities.
    Duan L; Wang L; Inge AK; Fischer A; Zou X; Sun L
    Inorg Chem; 2013 Jul; 52(14):7844-52. PubMed ID: 23808491
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Manipulating the Rate-Limiting Step in Water Oxidation Catalysis by Ruthenium Bipyridine-Dicarboxylate Complexes.
    Shaffer DW; Xie Y; Szalda DJ; Concepcion JJ
    Inorg Chem; 2016 Nov; 55(22):12024-12035. PubMed ID: 27802025
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbazole modification of ruthenium bipyridine-dicarboxylate oxygen evolution molecular catalysts.
    Otsuka H; Kobayashi A; Yoshida M; Kato M
    Dalton Trans; 2021 Nov; 50(44):16233-16241. PubMed ID: 34730158
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-Assembled Amphiphilic Water Oxidation Catalysts: Control of O-O Bond Formation Pathways by Different Aggregation Patterns.
    Yang B; Jiang X; Guo Q; Lei T; Zhang LP; Chen B; Tung CH; Wu LZ
    Angew Chem Int Ed Engl; 2016 May; 55(21):6229-34. PubMed ID: 27071858
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coupling between two Ru(bda) catalysts bridged by a
    Abate PO; Juárez VM; Baraldo LM
    Dalton Trans; 2024 Jan; 53(4):1575-1585. PubMed ID: 38164735
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Making oxygen with ruthenium complexes.
    Concepcion JJ; Jurss JW; Brennaman MK; Hoertz PG; Patrocinio AO; Murakami Iha NY; Templeton JL; Meyer TJ
    Acc Chem Res; 2009 Dec; 42(12):1954-65. PubMed ID: 19817345
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Behavior of Ru-bda Water-Oxidation Catalysts in Low Oxidation States.
    Matheu R; Ghaderian A; Francàs L; Chernev P; Ertem MZ; Benet-Buchholz J; Batista VS; Haumann M; Gimbert-Suriñach C; Sala X; Llobet A
    Chemistry; 2018 Sep; 24(49):12838-12847. PubMed ID: 29897655
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly efficient bioinspired molecular Ru water oxidation catalysts with negatively charged backbone ligands.
    Duan L; Wang L; Li F; Li F; Sun L
    Acc Chem Res; 2015 Jul; 48(7):2084-96. PubMed ID: 26131964
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electronic modification of the [Ru(II)(tpy)(bpy)(OH(2))](2+) scaffold: effects on catalytic water oxidation.
    Wasylenko DJ; Ganesamoorthy C; Henderson MA; Koivisto BD; Osthoff HD; Berlinguette CP
    J Am Chem Soc; 2010 Nov; 132(45):16094-106. PubMed ID: 20977265
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electronic Influence of the 2,2'-Bipyridine-6,6'-dicarboxylate Ligand in Ru-Based Molecular Water Oxidation Catalysts.
    Timmer BJJ; Kravchenko O; Zhang B; Liu T; Sun L
    Inorg Chem; 2021 Jan; 60(2):1202-1207. PubMed ID: 33382240
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toward controlling water oxidation catalysis: tunable activity of ruthenium complexes with axial imidazole/DMSO ligands.
    Wang L; Duan L; Stewart B; Pu M; Liu J; Privalov T; Sun L
    J Am Chem Soc; 2012 Nov; 134(45):18868-80. PubMed ID: 23062211
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ru-bda: Unique Molecular Water-Oxidation Catalysts with Distortion Induced Open Site and Negatively Charged Ligands.
    Zhang B; Sun L
    J Am Chem Soc; 2019 Apr; 141(14):5565-5580. PubMed ID: 30889353
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Supramolecular water oxidation with Ru-bda-based catalysts.
    Richmond CJ; Matheu R; Poater A; Falivene L; Benet-Buchholz J; Sala X; Cavallo L; Llobet A
    Chemistry; 2014 Dec; 20(52):17282-6. PubMed ID: 25377430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. From Ru-bda to Ru-bds: a step forward to highly efficient molecular water oxidation electrocatalysts under acidic and neutral conditions.
    Yang J; Wang L; Zhan S; Zou H; Chen H; Ahlquist MSG; Duan L; Sun L
    Nat Commun; 2021 Jan; 12(1):373. PubMed ID: 33446649
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tailored design of ruthenium molecular catalysts with 2,2'-bypyridine-6,6'-dicarboxylate and pyrazole based ligands for water oxidation.
    Daniel Q; Wang L; Duan L; Li F; Sun L
    Dalton Trans; 2016 Oct; 45(37):14689-96. PubMed ID: 27241474
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Water oxidation catalyzed by mononuclear ruthenium complexes with a 2,2'-bipyridine-6,6'-dicarboxylate (bda) ligand: how ligand environment influences the catalytic behavior.
    Staehle R; Tong L; Wang L; Duan L; Fischer A; Ahlquist MS; Sun L; Rau S
    Inorg Chem; 2014 Feb; 53(3):1307-19. PubMed ID: 24422472
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural evolution of the Ru-bms complex to the real water oxidation catalyst of Ru-bda: the bite angle matters.
    Yang J; Liu B; Duan L
    Dalton Trans; 2020 Apr; 49(14):4369-4375. PubMed ID: 32167105
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Off-Set Interactions of Ruthenium-bda Type Catalysts for Promoting Water-Splitting Performance.
    Timmer BJJ; Kravchenko O; Liu T; Zhang B; Sun L
    Angew Chem Int Ed Engl; 2021 Jun; 60(26):14504-14511. PubMed ID: 33861495
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.