These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
432 related articles for article (PubMed ID: 29707944)
1. High Field Asymmetric Waveform Ion Mobility Spectrometry in Nontargeted Bottom-up Proteomics of Dried Blood Spots. Rosting C; Yu J; Cooper HJ J Proteome Res; 2018 Jun; 17(6):1997-2004. PubMed ID: 29707944 [TBL] [Abstract][Full Text] [Related]
2. Accurate Quantitative Proteomic Analyses Using Metabolic Labeling and High Field Asymmetric Waveform Ion Mobility Spectrometry (FAIMS). Pfammatter S; Bonneil E; McManus FP; Thibault P J Proteome Res; 2019 May; 18(5):2129-2138. PubMed ID: 30919622 [TBL] [Abstract][Full Text] [Related]
3. LESA MS Imaging of Heat-Preserved and Frozen Tissue: Benefits of Multistep Static FAIMS. Griffiths RL; Simmonds AL; Swales JG; Goodwin RJA; Cooper HJ Anal Chem; 2018 Nov; 90(22):13306-13314. PubMed ID: 30350618 [TBL] [Abstract][Full Text] [Related]
4. A Novel Differential Ion Mobility Device Expands the Depth of Proteome Coverage and the Sensitivity of Multiplex Proteomic Measurements. Pfammatter S; Bonneil E; McManus FP; Prasad S; Bailey DJ; Belford M; Dunyach JJ; Thibault P Mol Cell Proteomics; 2018 Oct; 17(10):2051-2067. PubMed ID: 30007914 [TBL] [Abstract][Full Text] [Related]
5. Coupling High-Field Asymmetric Ion Mobility Spectrometry with Capillary Electrophoresis-Electrospray Ionization-Tandem Mass Spectrometry Improves Protein Identifications in Bottom-Up Proteomic Analysis of Low Nanogram Samples. Johnson KR; Greguš M; Ivanov AR J Proteome Res; 2022 Oct; 21(10):2453-2461. PubMed ID: 36112031 [TBL] [Abstract][Full Text] [Related]
6. Probing the complementarity of FAIMS and strong cation exchange chromatography in shotgun proteomics. Creese AJ; Shimwell NJ; Larkins KP; Heath JK; Cooper HJ J Am Soc Mass Spectrom; 2013 Mar; 24(3):431-43. PubMed ID: 23400772 [TBL] [Abstract][Full Text] [Related]
7. High-Field Asymmetric Waveform Ion Mobility Spectrometry: Practical Alternative for Cardiac Proteome Sample Processing. Ai L; Binek A; Kreimer S; Ayres M; Stotland A; Van Eyk JE J Proteome Res; 2023 Jun; 22(6):2124-2130. PubMed ID: 37040897 [TBL] [Abstract][Full Text] [Related]
8. High-field asymmetric waveform ion mobility spectrometry for mass spectrometry-based proteomics. Swearingen KE; Moritz RL Expert Rev Proteomics; 2012 Oct; 9(5):505-17. PubMed ID: 23194268 [TBL] [Abstract][Full Text] [Related]
9. Online LC-FAIMS-MS/MS for the Analysis of Phosphorylation in Proteins. Zhao H; Creese AJ; Cooper HJ Methods Mol Biol; 2016; 1355():241-50. PubMed ID: 26584930 [TBL] [Abstract][Full Text] [Related]
10. Liquid extraction surface analysis field asymmetric waveform ion mobility spectrometry mass spectrometry for the analysis of dried blood spots. Griffiths RL; Dexter A; Creese AJ; Cooper HJ Analyst; 2015 Oct; 140(20):6879-85. PubMed ID: 26198596 [TBL] [Abstract][Full Text] [Related]
11. Orbitrap Mass Spectrometry and High-Field Asymmetric Waveform Ion Mobility Spectrometry (FAIMS) Enable the in-Depth Analysis of Human Serum Proteoforms. Kline JT; Belford MW; Boeser CL; Huguet R; Fellers RT; Greer JB; Greer SM; Horn DM; Durbin KR; Dunyach JJ; Ahsan N; Fornelli L J Proteome Res; 2023 Nov; 22(11):3418-3426. PubMed ID: 37774690 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of Disposable Trap Column nanoLC-FAIMS-MS/MS for the Proteomic Analysis of FFPE Tissue. Eckert S; Chang YC; Bayer FP; The M; Kuhn PH; Weichert W; Kuster B J Proteome Res; 2021 Dec; 20(12):5402-5411. PubMed ID: 34735149 [TBL] [Abstract][Full Text] [Related]
13. Dried blood spots as a sampling technique for the quantitative determination of guanfacine in clinical studies. Li Y; Henion J; Abbott R; Wang P Bioanalysis; 2011 Nov; 3(22):2501-14. PubMed ID: 22122599 [TBL] [Abstract][Full Text] [Related]
14. Increasing Peak Capacity in Nontargeted Omics Applications by Combining Full Scan Field Asymmetric Waveform Ion Mobility Spectrometry with Liquid Chromatography-Mass Spectrometry. Arthur KL; Turner MA; Reynolds JC; Creaser CS Anal Chem; 2017 Mar; 89(6):3452-3459. PubMed ID: 28230966 [TBL] [Abstract][Full Text] [Related]
15. Quantitation of therapeutic proteins following direct trypsin digestion of dried blood spot samples and detection by LC-MS-based bioanalytical methods in drug discovery. Sleczka BG; D'Arienzo CJ; Tymiak AA; Olah TV Bioanalysis; 2012 Jan; 4(1):29-40. PubMed ID: 22191592 [TBL] [Abstract][Full Text] [Related]
16. Liquid Extraction Surface Analysis (LESA) High-Field Asymmetric Waveform Ion Mobility Spectrometry (FAIMS) Mass Spectrometry for In Situ Analysis of Intact Proteins. Griffiths RL; Kocurek KI; Cooper HJ Methods Mol Biol; 2020; 2084():191-201. PubMed ID: 31729662 [TBL] [Abstract][Full Text] [Related]
17. Improved Thyreostatic Drug Detection in Animal Tissues Using Liquid Chromatography-High-Field Asymmetric Waveform Ion Mobility Spectrometry-Mass Spectrometry. Purves RW; Souster K; West M; Huda AM; Fisher CME; Belford MW; Shurmer BO J Agric Food Chem; 2022 Apr; 70(16):4785-4791. PubMed ID: 35060701 [TBL] [Abstract][Full Text] [Related]
18. LESA FAIMS Mass Spectrometry for the Spatial Profiling of Proteins from Tissue. Griffiths RL; Creese AJ; Race AM; Bunch J; Cooper HJ Anal Chem; 2016 Jul; 88(13):6758-66. PubMed ID: 27228471 [TBL] [Abstract][Full Text] [Related]
19. Integration of Segmented Ion Fractionation and Differential Ion Mobility on a Q-Exactive Hybrid Quadrupole Orbitrap Mass Spectrometer. Pfammatter S; Wu Z; Bonneil E; Bailey DJ; Prasad S; Belford M; Rochon J; Picard P; Lacoursière J; Dunyach JJ; Thibault P Anal Chem; 2021 Jul; 93(28):9817-9825. PubMed ID: 34213903 [TBL] [Abstract][Full Text] [Related]
20. Improved Sensitivity of Ultralow Flow LC-MS-Based Proteomic Profiling of Limited Samples Using Monolithic Capillary Columns and FAIMS Technology. Greguš M; Kostas JC; Ray S; Abbatiello SE; Ivanov AR Anal Chem; 2020 Nov; 92(21):14702-14712. PubMed ID: 33054160 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]