BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

417 related articles for article (PubMed ID: 29707944)

  • 1. High Field Asymmetric Waveform Ion Mobility Spectrometry in Nontargeted Bottom-up Proteomics of Dried Blood Spots.
    Rosting C; Yu J; Cooper HJ
    J Proteome Res; 2018 Jun; 17(6):1997-2004. PubMed ID: 29707944
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accurate Quantitative Proteomic Analyses Using Metabolic Labeling and High Field Asymmetric Waveform Ion Mobility Spectrometry (FAIMS).
    Pfammatter S; Bonneil E; McManus FP; Thibault P
    J Proteome Res; 2019 May; 18(5):2129-2138. PubMed ID: 30919622
    [TBL] [Abstract][Full Text] [Related]  

  • 3. LESA MS Imaging of Heat-Preserved and Frozen Tissue: Benefits of Multistep Static FAIMS.
    Griffiths RL; Simmonds AL; Swales JG; Goodwin RJA; Cooper HJ
    Anal Chem; 2018 Nov; 90(22):13306-13314. PubMed ID: 30350618
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Novel Differential Ion Mobility Device Expands the Depth of Proteome Coverage and the Sensitivity of Multiplex Proteomic Measurements.
    Pfammatter S; Bonneil E; McManus FP; Prasad S; Bailey DJ; Belford M; Dunyach JJ; Thibault P
    Mol Cell Proteomics; 2018 Oct; 17(10):2051-2067. PubMed ID: 30007914
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coupling High-Field Asymmetric Ion Mobility Spectrometry with Capillary Electrophoresis-Electrospray Ionization-Tandem Mass Spectrometry Improves Protein Identifications in Bottom-Up Proteomic Analysis of Low Nanogram Samples.
    Johnson KR; Greguš M; Ivanov AR
    J Proteome Res; 2022 Oct; 21(10):2453-2461. PubMed ID: 36112031
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing the complementarity of FAIMS and strong cation exchange chromatography in shotgun proteomics.
    Creese AJ; Shimwell NJ; Larkins KP; Heath JK; Cooper HJ
    J Am Soc Mass Spectrom; 2013 Mar; 24(3):431-43. PubMed ID: 23400772
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-Field Asymmetric Waveform Ion Mobility Spectrometry: Practical Alternative for Cardiac Proteome Sample Processing.
    Ai L; Binek A; Kreimer S; Ayres M; Stotland A; Van Eyk JE
    J Proteome Res; 2023 Jun; 22(6):2124-2130. PubMed ID: 37040897
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-field asymmetric waveform ion mobility spectrometry for mass spectrometry-based proteomics.
    Swearingen KE; Moritz RL
    Expert Rev Proteomics; 2012 Oct; 9(5):505-17. PubMed ID: 23194268
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Online LC-FAIMS-MS/MS for the Analysis of Phosphorylation in Proteins.
    Zhao H; Creese AJ; Cooper HJ
    Methods Mol Biol; 2016; 1355():241-50. PubMed ID: 26584930
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Liquid extraction surface analysis field asymmetric waveform ion mobility spectrometry mass spectrometry for the analysis of dried blood spots.
    Griffiths RL; Dexter A; Creese AJ; Cooper HJ
    Analyst; 2015 Oct; 140(20):6879-85. PubMed ID: 26198596
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Orbitrap Mass Spectrometry and High-Field Asymmetric Waveform Ion Mobility Spectrometry (FAIMS) Enable the in-Depth Analysis of Human Serum Proteoforms.
    Kline JT; Belford MW; Boeser CL; Huguet R; Fellers RT; Greer JB; Greer SM; Horn DM; Durbin KR; Dunyach JJ; Ahsan N; Fornelli L
    J Proteome Res; 2023 Nov; 22(11):3418-3426. PubMed ID: 37774690
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of Disposable Trap Column nanoLC-FAIMS-MS/MS for the Proteomic Analysis of FFPE Tissue.
    Eckert S; Chang YC; Bayer FP; The M; Kuhn PH; Weichert W; Kuster B
    J Proteome Res; 2021 Dec; 20(12):5402-5411. PubMed ID: 34735149
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dried blood spots as a sampling technique for the quantitative determination of guanfacine in clinical studies.
    Li Y; Henion J; Abbott R; Wang P
    Bioanalysis; 2011 Nov; 3(22):2501-14. PubMed ID: 22122599
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increasing Peak Capacity in Nontargeted Omics Applications by Combining Full Scan Field Asymmetric Waveform Ion Mobility Spectrometry with Liquid Chromatography-Mass Spectrometry.
    Arthur KL; Turner MA; Reynolds JC; Creaser CS
    Anal Chem; 2017 Mar; 89(6):3452-3459. PubMed ID: 28230966
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitation of therapeutic proteins following direct trypsin digestion of dried blood spot samples and detection by LC-MS-based bioanalytical methods in drug discovery.
    Sleczka BG; D'Arienzo CJ; Tymiak AA; Olah TV
    Bioanalysis; 2012 Jan; 4(1):29-40. PubMed ID: 22191592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Liquid Extraction Surface Analysis (LESA) High-Field Asymmetric Waveform Ion Mobility Spectrometry (FAIMS) Mass Spectrometry for In Situ Analysis of Intact Proteins.
    Griffiths RL; Kocurek KI; Cooper HJ
    Methods Mol Biol; 2020; 2084():191-201. PubMed ID: 31729662
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved Thyreostatic Drug Detection in Animal Tissues Using Liquid Chromatography-High-Field Asymmetric Waveform Ion Mobility Spectrometry-Mass Spectrometry.
    Purves RW; Souster K; West M; Huda AM; Fisher CME; Belford MW; Shurmer BO
    J Agric Food Chem; 2022 Apr; 70(16):4785-4791. PubMed ID: 35060701
    [TBL] [Abstract][Full Text] [Related]  

  • 18. LESA FAIMS Mass Spectrometry for the Spatial Profiling of Proteins from Tissue.
    Griffiths RL; Creese AJ; Race AM; Bunch J; Cooper HJ
    Anal Chem; 2016 Jul; 88(13):6758-66. PubMed ID: 27228471
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integration of Segmented Ion Fractionation and Differential Ion Mobility on a Q-Exactive Hybrid Quadrupole Orbitrap Mass Spectrometer.
    Pfammatter S; Wu Z; Bonneil E; Bailey DJ; Prasad S; Belford M; Rochon J; Picard P; Lacoursière J; Dunyach JJ; Thibault P
    Anal Chem; 2021 Jul; 93(28):9817-9825. PubMed ID: 34213903
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved Sensitivity of Ultralow Flow LC-MS-Based Proteomic Profiling of Limited Samples Using Monolithic Capillary Columns and FAIMS Technology.
    Greguš M; Kostas JC; Ray S; Abbatiello SE; Ivanov AR
    Anal Chem; 2020 Nov; 92(21):14702-14712. PubMed ID: 33054160
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.