BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 29707954)

  • 1. Biocompatible Surface-Coated Probe for in Vivo, in Situ, and Microscale Lipidomics of Small Biological Organisms and Cells Using Mass Spectrometry.
    Deng J; Li W; Yang Q; Liu Y; Fang L; Guo Y; Guo P; Lin L; Yang Y; Luan T
    Anal Chem; 2018 Jun; 90(11):6936-6944. PubMed ID: 29707954
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coupling Paternò-Büchi Reaction with Surface-Coated Probe Nanoelectrospray Ionization Mass Spectrometry for In Vivo and Microscale Profiling of Lipid C═C Location Isomers in Complex Biological Tissues.
    Deng J; Yang Y; Liu Y; Fang L; Lin L; Luan T
    Anal Chem; 2019 Apr; 91(7):4592-4599. PubMed ID: 30832475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A microscale solid-phase microextraction probe for the in situ analysis of perfluoroalkyl substances and lipids in biological tissues using mass spectrometry.
    Yang Y; Deng J; Liu Y; He K; Xiang Z; Luan T
    Analyst; 2019 Sep; 144(18):5637-5645. PubMed ID: 31433404
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface-coated probe nanoelectrospray ionization mass spectrometry for analysis of target compounds in individual small organisms.
    Deng J; Yang Y; Xu M; Wang X; Lin L; Yao ZP; Luan T
    Anal Chem; 2015 Oct; 87(19):9923-30. PubMed ID: 26360344
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of trace malachite green, crystal violet, and their metabolites in zebrafish by surface-coated probe nanoelectrospray ionization mass spectrometry.
    Xiao X; Chen C; Deng J; Wu J; He K; Xiang Z; Yang Y
    Talanta; 2020 Sep; 217():121064. PubMed ID: 32498869
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-target ROIMCR LC-MS analysis of the disruptive effects of TBT over time on the lipidomics of Daphnia magna.
    Jafari JM; Casas J; Barata C; Abdollahi H; Tauler R
    Metabolomics; 2023 Aug; 19(8):70. PubMed ID: 37548829
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrospray ionization tandem mass spectrometry (ESI-MS/MS)-based shotgun lipidomics.
    Isaac G
    Methods Mol Biol; 2011; 708():259-75. PubMed ID: 21207296
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly efficient microscale purification of glycerophospholipids by microfluidic cell lysis and lipid extraction for lipidomics profiling.
    Sun T; Pawlowski S; Johnson ME
    Anal Chem; 2011 Sep; 83(17):6628-34. PubMed ID: 21766805
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface analysis of lipids by mass spectrometry: more than just imaging.
    Ellis SR; Brown SH; In Het Panhuis M; Blanksby SJ; Mitchell TW
    Prog Lipid Res; 2013 Oct; 52(4):329-53. PubMed ID: 23623802
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel advances in shotgun lipidomics for biology and medicine.
    Wang M; Wang C; Han RH; Han X
    Prog Lipid Res; 2016 Jan; 61():83-108. PubMed ID: 26703190
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical Derivatization and Ultrahigh Resolution and Accurate Mass Spectrometry Strategies for "Shotgun" Lipidome Analysis.
    Ryan E; Reid GE
    Acc Chem Res; 2016 Sep; 49(9):1596-604. PubMed ID: 27575732
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strategies to Improve/Eliminate the Limitations in Shotgun Lipidomics.
    Hu C; Duan Q; Han X
    Proteomics; 2020 Jun; 20(11):e1900070. PubMed ID: 31291508
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intensity-Independent Noise Filtering in FT MS and FT MS/MS Spectra for Shotgun Lipidomics.
    Schuhmann K; Thomas H; Ackerman JM; Nagornov KO; Tsybin YO; Shevchenko A
    Anal Chem; 2017 Jul; 89(13):7046-7052. PubMed ID: 28570056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mass-spectrometry-based lipidomics.
    Hu T; Zhang JL
    J Sep Sci; 2018 Jan; 41(1):351-372. PubMed ID: 28859259
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative spatial analysis of the mouse brain lipidome by pressurized liquid extraction surface analysis.
    Almeida R; Berzina Z; Arnspang EC; Baumgart J; Vogt J; Nitsch R; Ejsing CS
    Anal Chem; 2015 Feb; 87(3):1749-56. PubMed ID: 25548943
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lipidomics from sample preparation to data analysis: a primer.
    Züllig T; Trötzmüller M; Köfeler HC
    Anal Bioanal Chem; 2020 Apr; 412(10):2191-2209. PubMed ID: 31820027
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shotgun lipidomics on a LTQ Orbitrap mass spectrometer by successive switching between acquisition polarity modes.
    Schuhmann K; Almeida R; Baumert M; Herzog R; Bornstein SR; Shevchenko A
    J Mass Spectrom; 2012 Jan; 47(1):96-104. PubMed ID: 22282095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discovery of Potential Lipid Biomarkers for Human Colorectal Cancer by In-Capillary Extraction Nanoelectrospray Ionization Mass Spectrometry.
    Deng J; Yang Y; Zeng Z; Xiao X; Li J; Luan T
    Anal Chem; 2021 Sep; 93(38):13089-13098. PubMed ID: 34523336
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comprehensive Evaluation of a Quantitative Shotgun Lipidomics Platform for Mammalian Sample Analysis on a High-Resolution Mass Spectrometer.
    Nielsen IØ; Vidas Olsen A; Dicroce-Giacobini J; Papaleo E; Andersen KK; Jäättelä M; Maeda K; Bilgin M
    J Am Soc Mass Spectrom; 2020 Apr; 31(4):894-907. PubMed ID: 32129994
    [TBL] [Abstract][Full Text] [Related]  

  • 20. One-step lipid extraction for plasma lipidomics analysis by liquid chromatography mass spectrometry.
    Satomi Y; Hirayama M; Kobayashi H
    J Chromatogr B Analyt Technol Biomed Life Sci; 2017 Sep; 1063():93-100. PubMed ID: 28850891
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.