These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
807 related articles for article (PubMed ID: 29708005)
1. MicroRNA-based therapeutics in central nervous system injuries. Sun P; Liu DZ; Jickling GC; Sharp FR; Yin KJ J Cereb Blood Flow Metab; 2018 Jul; 38(7):1125-1148. PubMed ID: 29708005 [TBL] [Abstract][Full Text] [Related]
2. The Role of MicroRNA in Traumatic Brain Injury. Pan YB; Sun ZL; Feng DF Neuroscience; 2017 Dec; 367():189-199. PubMed ID: 29113926 [TBL] [Abstract][Full Text] [Related]
3. MicroRNA-21 in the Pathogenesis of Traumatic Brain Injury. Ji W; Jiao J; Cheng C; Shao J Neurochem Res; 2018 Oct; 43(10):1863-1868. PubMed ID: 30066160 [TBL] [Abstract][Full Text] [Related]
4. Coding and long non-coding gene expression changes in the CNS traumatic injuries. Wu X; Wei H; Wu JQ Cell Mol Life Sci; 2022 Feb; 79(2):123. PubMed ID: 35129669 [TBL] [Abstract][Full Text] [Related]
5. Current strategies for therapeutic drug delivery after traumatic CNS injury. Lee HJ; Ryu JS; Vig PJ Ther Deliv; 2019 Apr; 10(4):251-263. PubMed ID: 30991923 [TBL] [Abstract][Full Text] [Related]
6. Targeting vascular inflammation in ischemic stroke: Recent developments on novel immunomodulatory approaches. Shekhar S; Cunningham MW; Pabbidi MR; Wang S; Booz GW; Fan F Eur J Pharmacol; 2018 Aug; 833():531-544. PubMed ID: 29935175 [TBL] [Abstract][Full Text] [Related]
7. The Neuroprotection Effects of Exosome in Central Nervous System Injuries: a New Target for Therapeutic Intervention. Zhang L; Mao L; Wang H Mol Neurobiol; 2022 Dec; 59(12):7152-7169. PubMed ID: 36103108 [TBL] [Abstract][Full Text] [Related]
8. Non-coding RNAs in the regulation of blood-brain barrier functions in central nervous system disorders. Sun P; Hamblin MH; Yin KJ Fluids Barriers CNS; 2022 Mar; 19(1):27. PubMed ID: 35346266 [TBL] [Abstract][Full Text] [Related]
9. The Roles of MicroRNAs in Stroke: Possible Therapeutic Targets. Xu W; Gao L; Zheng J; Li T; Shao A; Reis C; Chen S; Zhang J Cell Transplant; 2018 Dec; 27(12):1778-1788. PubMed ID: 29871520 [TBL] [Abstract][Full Text] [Related]
10. Inflammatory response in traumatic brain and spinal cord injury: The role of XCL1-XCR1 axis and T cells. Zhang M; Han X; Yan L; Fu Y; Kou H; Shang C; Wang J; Liu H; Jiang C; Wang J; Cheng T CNS Neurosci Ther; 2024 Jun; 30(6):e14781. PubMed ID: 38887195 [TBL] [Abstract][Full Text] [Related]
11. The emerging roles of circular RNAs in CNS injuries. Qu X; Li Z; Chen J; Hou L J Neurosci Res; 2020 Jul; 98(7):1485-1497. PubMed ID: 32052488 [TBL] [Abstract][Full Text] [Related]
12. Research progress of microRNA in spinal cord injury. Wei DM; Fang R; Deng ZZ; Bai XY; Zhu JH; Zhai TY; Zhang C; Gao JZ; Su D; Yang YL; Zhao L Sheng Li Xue Bao; 2024 Jun; 76(3):394-406. PubMed ID: 38939934 [TBL] [Abstract][Full Text] [Related]
13. The roles of microRNAs in spinal cord injury. Shi Z; Zhou H; Lu L; Li X; Fu Z; Liu J; Kang Y; Wei Z; Pan B; Liu L; Kong X; Feng S Int J Neurosci; 2017 Dec; 127(12):1104-1115. PubMed ID: 28436759 [TBL] [Abstract][Full Text] [Related]
19. microRNAs in spinal cord injury: potential roles and therapeutic implications. Ning B; Gao L; Liu RH; Liu Y; Zhang NS; Chen ZY Int J Biol Sci; 2014; 10(9):997-1006. PubMed ID: 25210498 [TBL] [Abstract][Full Text] [Related]
20. Recent progress in therapeutic drug delivery systems for treatment of traumatic CNS injuries. Khadka B; Lee JY; Kim KT; Bae JS Future Med Chem; 2020 Oct; 12(19):1759-1778. PubMed ID: 33028091 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]