BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 29708257)

  • 1. Consecutive Lossen rearrangement/transamidation reaction of hydroxamic acids under catalyst- and additive-free conditions.
    Jia M; Zhang H; Lin Y; Chen D; Chen Y; Xia Y
    Org Biomol Chem; 2018 May; 16(19):3615-3624. PubMed ID: 29708257
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Revisiting a Classic Transformation: A Lossen Rearrangement Initiated by Nitriles and "Pseudo-Catalytic" in Isocyanate.
    Strotman NA; Ortiz A; Savage SA; Wilbert CR; Ayers S; Kiau S
    J Org Chem; 2017 Apr; 82(8):4044-4049. PubMed ID: 28394130
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A base-mediated self-propagative Lossen rearrangement of hydroxamic acids for the efficient and facile synthesis of aromatic and aliphatic primary amines.
    Ohtsuka N; Okuno M; Hoshino Y; Honda K
    Org Biomol Chem; 2016 Oct; 14(38):9046-54. PubMed ID: 27605448
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ethyl 2-cyano-2-(4-nitrophenylsulfonyloxyimino)acetate-mediated Lossen rearrangement: single-pot racemization-free synthesis of hydroxamic acids and ureas from carboxylic acids.
    Thalluri K; Manne SR; Dev D; Mandal B
    J Org Chem; 2014 May; 79(9):3765-75. PubMed ID: 24678821
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Lossen rearrangement from free hydroxamic acids.
    Thomas M; Alsarraf J; Araji N; Tranoy-Opalinski I; Renoux B; Papot S
    Org Biomol Chem; 2019 Jun; 17(22):5420-5427. PubMed ID: 31090777
    [TBL] [Abstract][Full Text] [Related]  

  • 6. N-Methylimidazole-catalyzed synthesis of carbamates from hydroxamic acids via the Lossen rearrangement.
    Yoganathan S; Miller SJ
    Org Lett; 2013 Feb; 15(3):602-5. PubMed ID: 23327543
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fully Renewable Non-Isocyanate Polyurethanes via the Lossen Rearrangement.
    Filippi L; Meier MAR
    Macromol Rapid Commun; 2021 Feb; 42(3):e2000440. PubMed ID: 32935889
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A combined experimental and computational investigation on the unusual molecular mechanism of the Lossen rearrangement reaction activated by carcinogenic halogenated quinones.
    Shan GQ; Yu A; Zhao CF; Huang CH; Zhu LY; Zhu BZ
    J Org Chem; 2015 Jan; 80(1):180-9. PubMed ID: 25470188
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of carbodiimide mediated Lossen rearrangement for the synthesis of alpha-ureidopeptides and peptidyl ureas employing N-urethane alpha-amino/peptidyl hydroxamic acids.
    Narendra N; Chennakrishnareddy G; Sureshbabu VV
    Org Biomol Chem; 2009 Sep; 7(17):3520-6. PubMed ID: 19675909
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lossen Rearrangement of p-Toluenesulfonates of N-Oxyimides in Basic Condition, Theoretical Study, and Molecular Docking.
    Kijewska M; Sharfalddin AA; Jaremko Ł; Cal M; Setner B; Siczek M; Stefanowicz P; Hussien MA; Emwas AH; Jaremko M
    Front Chem; 2021; 9():662533. PubMed ID: 33937199
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formamide Synthesis through Borinic Acid Catalysed Transamidation under Mild Conditions.
    Dine TM; Evans D; Rouden J; Blanchet J
    Chemistry; 2016 Apr; 22(17):5894-8. PubMed ID: 26946179
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation of Complex Hydrazine Derivatives via Aza-Lossen Rearrangement.
    Polat DE; Brzezinski DD; Beauchemin AM
    Org Lett; 2019 Jun; 21(12):4849-4852. PubMed ID: 31184909
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Late-Stage Formation of a Sactionine Linkage Enabled by Lossen Rearrangement of Glycyl Hydroxamic Acid.
    Hayashi J; Kobayashi D; Denda M; Otaka A
    Org Lett; 2024 Jun; 26(24):5167-5171. PubMed ID: 38848136
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cu-catalysed transamidation of unactivated aliphatic amides.
    Kumar V; Dhawan S; Bala R; Mohite SB; Singh P; Karpoormath R
    Org Biomol Chem; 2022 Aug; 20(34):6931-6940. PubMed ID: 35983826
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalyst-Free Transamidation of Aromatic Amines with Formamide Derivatives and Tertiary Amides with Aliphatic Amines.
    Yin J; Zhang J; Cai C; Deng GJ; Gong H
    Org Lett; 2019 Jan; 21(2):387-392. PubMed ID: 30588817
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metal-assisted Lossen rearrangement.
    Jašíková L; Hanikýřová E; Škríba A; Jašík J; Roithová J
    J Org Chem; 2012 Mar; 77(6):2829-36. PubMed ID: 22360436
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The reaction of hydroxamic acids with water-soluble carbodiimides. A Lossen rearrangement.
    Hoare DG; Olson A; Koshland DE
    J Am Chem Soc; 1968 Mar; 90(6):1638-43. PubMed ID: 5636802
    [No Abstract]   [Full Text] [Related]  

  • 18. Citrus Juice: Green and Natural Catalyst for the Solvent-free Silica Supported Synthesis of β-Enaminones Using Grindstone Technique.
    Marvi O; Fekri LZ
    Comb Chem High Throughput Screen; 2018; 21(1):19-25. PubMed ID: 29295688
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detoxifying carcinogenic polyhalogenated quinones by hydroxamic acids via an unusual double Lossen rearrangement mechanism.
    Zhu BZ; Zhu JG; Mao L; Kalyanaraman B; Shan GQ
    Proc Natl Acad Sci U S A; 2010 Nov; 107(48):20686-90. PubMed ID: 21076034
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formal Lossen Rearrangement/[3+2] Annulation Cascade Catalyzed by a Modified Cyclopentadienyl Rh
    Yamada T; Shibata Y; Kawauchi S; Yoshizaki S; Tanaka K
    Chemistry; 2018 Apr; 24(22):5723-5727. PubMed ID: 29516563
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.