BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 29708339)

  • 1. Structural Evolution of Metal (Oxy)hydroxide Nanosheets during the Oxygen Evolution Reaction.
    Dette C; Hurst MR; Deng J; Nellist MR; Boettcher SW
    ACS Appl Mater Interfaces; 2019 Feb; 11(6):5590-5594. PubMed ID: 29708339
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modes of Fe Incorporation in Co-Fe (Oxy)hydroxide Oxygen Evolution Electrocatalysts.
    Zhang T; Nellist MR; Enman LJ; Xiang J; Boettcher SW
    ChemSusChem; 2019 May; 12(9):2015-2021. PubMed ID: 30371020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Morphology Dynamics of Single-Layered Ni(OH)
    Deng J; Nellist MR; Stevens MB; Dette C; Wang Y; Boettcher SW
    Nano Lett; 2017 Nov; 17(11):6922-6926. PubMed ID: 28991484
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cooperative Fe sites on transition metal (oxy)hydroxides drive high oxygen evolution activity in base.
    Ou Y; Twight LP; Samanta B; Liu L; Biswas S; Fehrs JL; Sagui NA; Villalobos J; Morales-Santelices J; Antipin D; Risch M; Toroker MC; Boettcher SW
    Nat Commun; 2023 Nov; 14(1):7688. PubMed ID: 38001061
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cobalt-iron (oxy)hydroxide oxygen evolution electrocatalysts: the role of structure and composition on activity, stability, and mechanism.
    Burke MS; Kast MG; Trotochaud L; Smith AM; Boettcher SW
    J Am Chem Soc; 2015 Mar; 137(10):3638-48. PubMed ID: 25700234
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemical performance of cobalt hydroxide nanosheets formed by the delamination of layered cobalt hydroxide in water.
    Schneiderová B; Demel J; Pleštil J; Tarábková H; Bohuslav J; Lang K
    Dalton Trans; 2014 Jul; 43(27):10484-91. PubMed ID: 24647991
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clarifying the Controversial Catalytic Performance of Co(OH)
    Song Z; Han X; Deng Y; Zhao N; Hu W; Zhong C
    ACS Appl Mater Interfaces; 2017 Jul; 9(27):22694-22703. PubMed ID: 28535344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Revised Oxygen Evolution Reaction Activity Trends for First-Row Transition-Metal (Oxy)hydroxides in Alkaline Media.
    Burke MS; Zou S; Enman LJ; Kellon JE; Gabor CA; Pledger E; Boettcher SW
    J Phys Chem Lett; 2015 Sep; 6(18):3737-42. PubMed ID: 26722749
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metallic Transition Metal Selenide Holey Nanosheets for Efficient Oxygen Evolution Electrocatalysis.
    Fang Z; Peng L; Lv H; Zhu Y; Yan C; Wang S; Kalyani P; Wu X; Yu G
    ACS Nano; 2017 Sep; 11(9):9550-9557. PubMed ID: 28885008
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxygen evolution on Fe-doped NiO electrocatalysts deposited via microplasma.
    Pebley AC; Decolvenaere E; Pollock TM; Gordon MJ
    Nanoscale; 2017 Oct; 9(39):15070-15082. PubMed ID: 28967664
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solution-cast metal oxide thin film electrocatalysts for oxygen evolution.
    Trotochaud L; Ranney JK; Williams KN; Boettcher SW
    J Am Chem Soc; 2012 Oct; 134(41):17253-61. PubMed ID: 22991896
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual-Functional Starfish-like P-Doped Co-Ni-S Nanosheets Supported on Nickel Foams with Enhanced Electrochemical Performance and Excellent Stability for Overall Water Splitting.
    Zhang F; Ge Y; Chu H; Dong P; Baines R; Pei Y; Ye M; Shen J
    ACS Appl Mater Interfaces; 2018 Feb; 10(8):7087-7095. PubMed ID: 29400057
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Facet-Dependent Surface Restructuring on Nickel (Oxy)hydroxides: A Self-Activation Process for Enhanced Oxygen Evolution Reaction.
    Yao Y; Zhao G; Guo X; Xiong P; Xu Z; Zhang L; Chen C; Xu C; Wu TS; Soo YL; Cui Z; Li MM; Zhu Y
    J Am Chem Soc; 2024 Jun; 146(22):15219-15229. PubMed ID: 38775440
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reactive Fe-Sites in Ni/Fe (Oxy)hydroxide Are Responsible for Exceptional Oxygen Electrocatalysis Activity.
    Stevens MB; Trang CDM; Enman LJ; Deng J; Boettcher SW
    J Am Chem Soc; 2017 Aug; 139(33):11361-11364. PubMed ID: 28789520
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metal Oxide/(oxy)hydroxide Overlayers as Hole Collectors and Oxygen-Evolution Catalysts on Water-Splitting Photoanodes.
    Laskowski FAL; Nellist MR; Qiu J; Boettcher SW
    J Am Chem Soc; 2019 Jan; 141(4):1394-1405. PubMed ID: 30537811
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly active mixed-metal nanosheet water oxidation catalysts made by pulsed-laser ablation in liquids.
    Hunter BM; Blakemore JD; Deimund M; Gray HB; Winkler JR; Müller AM
    J Am Chem Soc; 2014 Sep; 136(38):13118-21. PubMed ID: 25197774
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effective Construction of High-quality Iron Oxy-hydroxides and Co-doped Iron Oxy-hydroxides Nanostructures: Towards the Promising Oxygen Evolution Reaction Application.
    Zhang X; An L; Yin J; Xi P; Zheng Z; Du Y
    Sci Rep; 2017 Mar; 7():43590. PubMed ID: 28272443
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxygen Evolution Reaction Dynamics, Faradaic Charge Efficiency, and the Active Metal Redox States of Ni-Fe Oxide Water Splitting Electrocatalysts.
    Görlin M; Chernev P; Ferreira de Araújo J; Reier T; Dresp S; Paul B; Krähnert R; Dau H; Strasser P
    J Am Chem Soc; 2016 May; 138(17):5603-14. PubMed ID: 27031737
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hierarchical Fe-doped Ni
    Du J; Zou Z; Liu C; Xu C
    Nanoscale; 2018 Mar; 10(11):5163-5170. PubMed ID: 29492488
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tracking Catalyst Redox States and Reaction Dynamics in Ni-Fe Oxyhydroxide Oxygen Evolution Reaction Electrocatalysts: The Role of Catalyst Support and Electrolyte pH.
    Görlin M; Ferreira de Araújo J; Schmies H; Bernsmeier D; Dresp S; Gliech M; Jusys Z; Chernev P; Kraehnert R; Dau H; Strasser P
    J Am Chem Soc; 2017 Feb; 139(5):2070-2082. PubMed ID: 28080038
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.