These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 29708343)

  • 1. Nanodroplets Impact on Rough Surfaces: A Simulation and Theoretical Study.
    Gao S; Liao Q; Liu W; Liu Z
    Langmuir; 2018 May; 34(20):5910-5917. PubMed ID: 29708343
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Universal Model for the Maximum Spreading Factor of Impacting Nanodroplets: From Hydrophilic to Hydrophobic Surfaces.
    Wang YB; Wang YF; Gao SR; Yang YR; Wang XD; Chen M
    Langmuir; 2020 Aug; 36(31):9306-9316. PubMed ID: 32697096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coalescence-Induced Jumping of Nanodroplets on Textured Surfaces.
    Gao S; Liao Q; Liu W; Liu Z
    J Phys Chem Lett; 2018 Jan; 9(1):13-18. PubMed ID: 29235875
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular Dynamics Simulation on Behaviors of Water Nanodroplets Impinging on Moving Surfaces.
    Zhang H; Pan L; Xie X
    Nanomaterials (Basel); 2022 Jan; 12(2):. PubMed ID: 35055264
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular Dynamics Simulation of Nanodroplets Impacting Stripe-Textured Surfaces.
    Li R; Zhu P; Yin Z; Xu Y
    Langmuir; 2022 Jun; 38(22):7058-7066. PubMed ID: 35608995
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Maximum Spreading and Rebound of a Droplet Impacting onto a Spherical Surface at Low Weber Numbers.
    Bordbar A; Taassob A; Khojasteh D; Marengo M; Kamali R
    Langmuir; 2018 May; 34(17):5149-5158. PubMed ID: 29633848
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling the Maximum Spreading of Liquid Droplets Impacting Wetting and Nonwetting Surfaces.
    Lee JB; Derome D; Guyer R; Carmeliet J
    Langmuir; 2016 Feb; 32(5):1299-308. PubMed ID: 26743317
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Head-on Collision of Two Nanodroplets on a Solid Surface: A Molecular Dynamics Simulation Study.
    Mao P; Gao S; Liu W; Liu Z
    Langmuir; 2021 Oct; 37(42):12346-12355. PubMed ID: 34648710
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular Dynamics Simulation of Water Nanodroplet Bounce Back from Flat and Nanopillared Surface.
    Koishi T; Yasuoka K; Zeng XC
    Langmuir; 2017 Oct; 33(39):10184-10192. PubMed ID: 28876073
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Successive Rebounds of Impinging Water Droplets on Superhydrophobic Surfaces.
    Wang Y; Zhao Y; Sun L; Mehrizi AA; Lin S; Guo J; Chen L
    Langmuir; 2022 Mar; 38(12):3860-3867. PubMed ID: 35293214
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamical behaviors of nanodroplets impinging on solid surfaces in the presence of electric fields.
    Pan L; Chen Y; Li Z; Xie X
    Nanoscale; 2023 Mar; 15(13):6215-6224. PubMed ID: 36891750
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of Viscous Droplets on Superamphiphobic Surfaces.
    Zhao B; Wang X; Zhang K; Chen L; Deng X
    Langmuir; 2017 Jan; 33(1):144-151. PubMed ID: 27966980
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of viscous droplets on different wettable surfaces: Impact phenomena, the maximum spreading factor, spreading time and post-impact oscillation.
    Lin S; Zhao B; Zou S; Guo J; Wei Z; Chen L
    J Colloid Interface Sci; 2018 Apr; 516():86-97. PubMed ID: 29360059
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic wetting and spreading and the role of topography.
    McHale G; Newton MI; Shirtcliffe NJ
    J Phys Condens Matter; 2009 Nov; 21(46):464122. PubMed ID: 21715886
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coalescence-Induced Swift Jumping of Nanodroplets on Curved Surfaces.
    He X; Zhao L; Cheng J
    Langmuir; 2019 Jul; 35(30):9979-9987. PubMed ID: 31282161
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Droplet Impact Dynamics on Lubricant-Infused Superhydrophobic Surfaces: The Role of Viscosity Ratio.
    Kim JH; Rothstein JP
    Langmuir; 2016 Oct; 32(40):10166-10176. PubMed ID: 27622306
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tuning nanostructured surfaces with hybrid wettability areas to enhance condensation.
    Gao S; Liu W; Liu Z
    Nanoscale; 2019 Jan; 11(2):459-466. PubMed ID: 30325374
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact Dynamics of Nanodroplets on V-Shaped Substrates: Asymmetrical Behavior and Fast-Rebound Dynamics.
    Li T; Wu Y
    Langmuir; 2021 Nov; 37(44):13170-13178. PubMed ID: 34699717
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic wetting and spreading characteristics of a liquid droplet impinging on hydrophobic textured surfaces.
    Lee JB; Lee SH
    Langmuir; 2011 Jun; 27(11):6565-73. PubMed ID: 21539350
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact dynamics of oxidized liquid metal drops.
    Xu Q; Brown E; Jaeger HM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):043012. PubMed ID: 23679518
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.