These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 29708636)

  • 1. Securing a Supramolecular Architecture by Tying a Stopper Knot.
    Leigh DA; Pirvu L; Schaufelberger F; Tetlow DJ; Zhang L
    Angew Chem Int Ed Engl; 2018 Aug; 57(33):10484-10488. PubMed ID: 29708636
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tying different knots in a molecular strand.
    Leigh DA; Schaufelberger F; Pirvu L; Stenlid JH; August DP; Segard J
    Nature; 2020 Aug; 584(7822):562-568. PubMed ID: 32848222
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Knotting a molecular strand can invert macroscopic effects of chirality.
    Katsonis N; Lancia F; Leigh DA; Pirvu L; Ryabchun A; Schaufelberger F
    Nat Chem; 2020 Oct; 12(10):939-944. PubMed ID: 32747756
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tying a Molecular Overhand Knot of Single Handedness and Asymmetric Catalysis with the Corresponding Pseudo-D
    Gil-Ramírez G; Hoekman S; Kitching MO; Leigh DA; Vitorica-Yrezabal IJ; Zhang G
    J Am Chem Soc; 2016 Oct; 138(40):13159-13162. PubMed ID: 27667319
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Balancing ring and stopper group size to control the stability of doubly threaded [3]rotaxanes.
    Hertzog JE; Liu G; Rawe BW; Maddi VJ; Hart LF; Oh J; Dolinski ND; Rowan SJ
    Org Biomol Chem; 2023 Aug; 21(34):6969-6978. PubMed ID: 37581904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distinguishing Two Ammonium and Triazolium Sites of Interaction in a Three-Station [2]Rotaxane Molecular Shuttle.
    Waelès P; Fournel-Marotte K; Coutrot F
    Chemistry; 2017 Aug; 23(48):11529-11539. PubMed ID: 28594431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interplay between a Foldamer Helix and a Macrocycle in a Foldarotaxane Architecture.
    Gauthier M; Koehler V; Clavel C; Kauffmann B; Huc I; Ferrand Y; Coutrot F
    Angew Chem Int Ed Engl; 2021 Apr; 60(15):8380-8384. PubMed ID: 33475210
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A double-stranded DNA rotaxane.
    Ackermann D; Schmidt TL; Hannam JS; Purohit CS; Heckel A; Famulok M
    Nat Nanotechnol; 2010 Jun; 5(6):436-42. PubMed ID: 20400967
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Peptide-based rotaxanes and catenanes: an emerging class of supramolecular chemistry systems.
    Moretto A; Crisma M; Formaggio F; Toniolo C
    Biomol Concepts; 2012 Apr; 3(2):183-92. PubMed ID: 25436531
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of turn-structure on folding and entanglement in artificial molecular overhand knots.
    Song Y; Schaufelberger F; Ashbridge Z; Pirvu L; Vitorica-Yrezabal IJ; Leigh DA
    Chem Sci; 2020 Dec; 12(5):1826-1833. PubMed ID: 34163946
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Importance of Length and Flexibility of Macrocycle-Containing Molecular Translocators for the Synthesis of Improbable [2]Rotaxanes.
    Riss-Yaw B; Clavel C; Laurent P; Waelès P; Coutrot F
    Chemistry; 2018 Sep; 24(51):13659-13666. PubMed ID: 29969523
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rational Design for Rotaxane Synthesis through Intramolecular Slippage: Control of Activation Energy by Rigid Axle Length.
    Masai H; Terao J; Fujihara T; Tsuji Y
    Chemistry; 2016 May; 22(19):6624-30. PubMed ID: 27027800
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of triazolium-based mono- and tris-branched [1]rotaxanes using a molecular transporter of dibenzo-24-crown-8.
    Waelès P; Clavel C; Fournel-Marotte K; Coutrot F
    Chem Sci; 2015 Aug; 6(8):4828-4836. PubMed ID: 28717488
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metastable doubly threaded [3]rotaxanes with a large macrocycle.
    Hertzog JE; Maddi VJ; Hart LF; Rawe BW; Rauscher PM; Herbert KM; Bruckner EP; de Pablo JJ; Rowan SJ
    Chem Sci; 2022 May; 13(18):5333-5344. PubMed ID: 35655545
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular Knots.
    Fielden SDP; Leigh DA; Woltering SL
    Angew Chem Int Ed Engl; 2017 Sep; 56(37):11166-11194. PubMed ID: 28477423
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical Susceptibility of a Rotaxane.
    Zhang M; De Bo G
    J Am Chem Soc; 2019 Oct; 141(40):15879-15883. PubMed ID: 31490067
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ring-Over-Ring Deslipping From Imine-Bridged Heterorotaxanes.
    Hoshino S; Ono K; Kawai H
    Front Chem; 2022; 10():885939. PubMed ID: 35592307
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Biomechanical Comparison of Varying Base Knot Configurations with Different Overhand/Underhand Combinations of Reversing Half-Hitches on Alternating Posts After Basic Instructional Training.
    Evin HA; Bilden TT; Noonan BC; Chong AC
    Iowa Orthop J; 2019; 39(1):131-140. PubMed ID: 31413686
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-Stranded Tile Stoppers for Interlocked DNA Architectures.
    Valero J; Lohmann F; Keppner D; Famulok M
    Chembiochem; 2016 Jun; 17(12):1146-9. PubMed ID: 26972112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of [1]rotaxane via covalent bond formation and its unique fluorescent response by energy transfer in the presence of lithium ion.
    Hiratani K; Kaneyama M; Nagawa Y; Koyama E; Kanesato M
    J Am Chem Soc; 2004 Oct; 126(42):13568-9. PubMed ID: 15493885
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.