These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 29708641)

  • 1. A Comparative Reengineering Study of cpADH5 through Iterative and Simultaneous Multisite Saturation Mutagenesis.
    Ensari Y; Dhoke GV; Davari MD; Ruff AJ; Schwaneberg U
    Chembiochem; 2018 Jul; 19(14):1563-1569. PubMed ID: 29708641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inversion of cpADH5 Enantiopreference and Altered Chain Length Specificity for Methyl 3-Hydroxyalkanoates.
    Ensari Y; Dhoke GV; Davari MD; Bocola M; Ruff AJ; Schwaneberg U
    Chemistry; 2017 Sep; 23(51):12636-12645. PubMed ID: 28727189
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clarifying the Difference between Iterative Saturation Mutagenesis as a Rational Guide in Directed Evolution and OmniChange as a Gene Mutagenesis Technique.
    Acevedo-Rocha CG; Sun Z; Reetz MT
    Chembiochem; 2018 Dec; 19(24):2542-2544. PubMed ID: 30408315
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-site saturation by OmniChange yields a pH- and thermally improved phytase.
    Shivange AV; Dennig A; Schwaneberg U
    J Biotechnol; 2014 Jan; 170():68-72. PubMed ID: 24315971
    [TBL] [Abstract][Full Text] [Related]  

  • 5. What's My Substrate? Computational Function Assignment of Candida parapsilosis ADH5 by Genome Database Search, Virtual Screening, and QM/MM Calculations.
    Dhoke GV; Ensari Y; Davari MD; Ruff AJ; Schwaneberg U; Bocola M
    J Chem Inf Model; 2016 Jul; 56(7):1313-23. PubMed ID: 27387009
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combinatorial InVitroFlow-assisted mutagenesis (CombIMut) yields a 41-fold improved CelA2 cellulase.
    Körfer G; Besirlioglu V; Davari MD; Martinez R; Vojcic L; Schwaneberg U
    Biotechnol Bioeng; 2022 Aug; 119(8):2076-2087. PubMed ID: 35451061
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reengineered carbonyl reductase for reducing methyl-substituted cyclohexanones.
    Jakoblinnert A; Wachtmeister J; Schukur L; Shivange AV; Bocola M; Ansorge-Schumacher MB; Schwaneberg U
    Protein Eng Des Sel; 2013 Apr; 26(4):291-8. PubMed ID: 23355692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. OmniChange: simultaneous site saturation of up to five codons.
    Dennig A; Marienhagen J; Ruff AJ; Schwaneberg U
    Methods Mol Biol; 2014; 1179():139-49. PubMed ID: 25055775
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Iterative saturation mutagenesis: a powerful approach to engineer proteins by systematically simulating Darwinian evolution.
    Acevedo-Rocha CG; Hoebenreich S; Reetz MT
    Methods Mol Biol; 2014; 1179():103-28. PubMed ID: 25055773
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reengineered glucose oxidase for amperometric glucose determination in diabetes analytics.
    Arango Gutierrez E; Mundhada H; Meier T; Duefel H; Bocola M; Schwaneberg U
    Biosens Bioelectron; 2013 Dec; 50():84-90. PubMed ID: 23835222
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of an activity and stability improved carbonyl reductase from Candida parapsilosis.
    Jakoblinnert A; van den Wittenboer A; Shivange AV; Bocola M; Heffele L; Ansorge-Schumacher M; Schwaneberg U
    J Biotechnol; 2013 May; 165(1):52-62. PubMed ID: 23471075
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Focused rational iterative site-specific mutagenesis (FRISM).
    Li D; Wu Q; Reetz MT
    Methods Enzymol; 2020; 643():225-242. PubMed ID: 32896283
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of random mutagenesis and semi-rational designed libraries for improved cytochrome P450 BM3-catalyzed hydroxylation of small alkanes.
    Chen MM; Snow CD; Vizcarra CL; Mayo SL; Arnold FH
    Protein Eng Des Sel; 2012 Apr; 25(4):171-8. PubMed ID: 22334757
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DC-Analyzer-facilitated combinatorial strategy for rapid directed evolution of functional enzymes with multiple mutagenesis sites.
    Wang X; Zheng K; Zheng H; Nie H; Yang Z; Tang L
    J Biotechnol; 2014 Dec; 192 Pt A():102-7. PubMed ID: 25449543
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In Silico Prediction Methods for Site-Saturation Mutagenesis.
    Qu G; Sun Z
    Methods Mol Biol; 2022; 2397():49-69. PubMed ID: 34813059
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineered hydrophobic pocket of (S)-selective arylmalonate decarboxylase variant by simultaneous saturation mutagenesis to improve catalytic performance.
    Yoshida S; Enoki J; Kourist R; Miyamoto K
    Biosci Biotechnol Biochem; 2015; 79(12):1965-71. PubMed ID: 26115233
    [TBL] [Abstract][Full Text] [Related]  

  • 17. OmniChange: the sequence independent method for simultaneous site-saturation of five codons.
    Dennig A; Shivange AV; Marienhagen J; Schwaneberg U
    PLoS One; 2011; 6(10):e26222. PubMed ID: 22039444
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Directed evolution by using iterative saturation mutagenesis based on multiresidue sites.
    Parra LP; Agudo R; Reetz MT
    Chembiochem; 2013 Nov; 14(17):2301-9. PubMed ID: 24136881
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polishing the craft of genetic diversity creation in directed evolution.
    Tee KL; Wong TS
    Biotechnol Adv; 2013 Dec; 31(8):1707-21. PubMed ID: 24012599
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solubilization and Iterative Saturation Mutagenesis of α1,3-fucosyltransferase from Helicobacter pylori to enhance its catalytic efficiency.
    Choi YH; Kim JH; Park BS; Kim BG
    Biotechnol Bioeng; 2016 Aug; 113(8):1666-75. PubMed ID: 26804479
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.