These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. F-O-G Ring Formation in Glycopeptide Antibiotic Biosynthesis is Catalysed by OxyE. Peschke M; Brieke C; Cryle MJ Sci Rep; 2016 Oct; 6():35584. PubMed ID: 27752135 [TBL] [Abstract][Full Text] [Related]
23. Altering glycopeptide antibiotic biosynthesis through mutasynthesis allows incorporation of fluorinated phenylglycine residues. Voitsekhovskaia I; Ho YTC; Klatt C; Müller A; Machell DL; Tan YJ; Triesman M; Bingel M; Schittenhelm RB; Tailhades J; Kulik A; Maier ME; Otting G; Wohlleben W; Schneider T; Cryle M; Stegmann E RSC Chem Biol; 2024 Aug; 5(10):1017-34. PubMed ID: 39247680 [TBL] [Abstract][Full Text] [Related]
24. Understanding and manipulating glycopeptide pathways: the example of the dalbavancin precursor A40926. Sosio M; Donadio S J Ind Microbiol Biotechnol; 2006 Jul; 33(7):569-76. PubMed ID: 16761167 [TBL] [Abstract][Full Text] [Related]
25. More than just recruitment: the X-domain influences catalysis of the first phenolic coupling reaction in A47934 biosynthesis by Cytochrome P450 StaH. Ulrich V; Peschke M; Brieke C; Cryle MJ Mol Biosyst; 2016 Oct; 12(10):2992-3004. PubMed ID: 27477788 [TBL] [Abstract][Full Text] [Related]
26. Rapid access to glycopeptide antibiotic precursor peptides coupled with cytochrome P450-mediated catalysis: towards a biomimetic synthesis of glycopeptide antibiotics. Brieke C; Kratzig V; Haslinger K; Winkler A; Cryle MJ Org Biomol Chem; 2015 Feb; 13(7):2012-21. PubMed ID: 25501135 [TBL] [Abstract][Full Text] [Related]
27. Redesign of Substrate Selection in Glycopeptide Antibiotic Biosynthesis Enables Effective Formation of Alternate Peptide Backbones. Kaniusaite M; Kittilä T; Goode RJA; Schittenhelm RB; Cryle MJ ACS Chem Biol; 2020 Sep; 15(9):2444-2455. PubMed ID: 32794694 [TBL] [Abstract][Full Text] [Related]
28. Genome mining in Amycolatopsis balhimycina for ferredoxins capable of supporting cytochrome P450 enzymes involved in glycopeptide antibiotic biosynthesis. Geib N; Weber T; Wörtz T; Zerbe K; Wohlleben W; Robinson JA FEMS Microbiol Lett; 2010 May; 306(1):45-53. PubMed ID: 20337711 [TBL] [Abstract][Full Text] [Related]
30. How To Make a Glycopeptide: A Synthetic Biology Approach To Expand Antibiotic Chemical Diversity. Yim G; Wang W; Thaker MN; Tan S; Wright GD ACS Infect Dis; 2016 Sep; 2(9):642-650. PubMed ID: 27759388 [TBL] [Abstract][Full Text] [Related]
38. A proof-reading mechanism for non-proteinogenic amino acid incorporation into glycopeptide antibiotics. Kaniusaite M; Tailhades J; Marschall EA; Goode RJA; Schittenhelm RB; Cryle MJ Chem Sci; 2019 Nov; 10(41):9466-9482. PubMed ID: 32055321 [TBL] [Abstract][Full Text] [Related]
39. Sulfonation of glycopeptide antibiotics by sulfotransferase StaL depends on conformational flexibility of aglycone scaffold. Shi R; Munger C; Kalan L; Sulea T; Wright GD; Cygler M Proc Natl Acad Sci U S A; 2012 Jul; 109(29):11824-9. PubMed ID: 22753479 [TBL] [Abstract][Full Text] [Related]
40. Total Synthesis of Mannopeptimycin β via β-Hydroxyenduracididine Ligation. Wang J; Lin D; Liu M; Liu H; Blasco P; Sun Z; Cheung YC; Chen S; Li X J Am Chem Soc; 2021 Aug; 143(32):12784-12790. PubMed ID: 34352177 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]