BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

350 related articles for article (PubMed ID: 29708761)

  • 1. In Situ High-Level Nitrogen Doping into Carbon Nanospheres and Boosting of Capacitive Charge Storage in Both Anode and Cathode for a High-Energy 4.5 V Full-Carbon Lithium-Ion Capacitor.
    Sun F; Liu X; Wu HB; Wang L; Gao J; Li H; Lu Y
    Nano Lett; 2018 Jun; 18(6):3368-3376. PubMed ID: 29708761
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mesh-Like Carbon Nanosheets with High-Level Nitrogen Doping for High-Energy Dual-Carbon Lithium-Ion Capacitors.
    Li Z; Cao L; Chen W; Huang Z; Liu H
    Small; 2019 Apr; 15(15):e1805173. PubMed ID: 30861630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. S, O dual-doped porous carbon derived from activation of waste papers as electrodes for high performance lithium ion capacitors.
    Hao J; Bai J; Wang X; Wang Y; Guo Q; Yang Y; Zhao J; Chi C; Li Y
    Nanoscale Adv; 2021 Feb; 3(3):738-746. PubMed ID: 36133845
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A high performance lithium ion capacitor achieved by the integration of a Sn-C anode and a biomass-derived microporous activated carbon cathode.
    Sun F; Gao J; Zhu Y; Pi X; Wang L; Liu X; Qin Y
    Sci Rep; 2017 Feb; 7():40990. PubMed ID: 28155853
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Na
    Lu R; Ren X; Wang C; Zhan C; Nan D; Lv R; Shen W; Kang F; Huang ZH
    Materials (Basel); 2020 Dec; 14(1):. PubMed ID: 33396727
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Li-Ion Capacitor Integrated with Nano-network-Structured Ni/NiO/C Anode and Nitrogen-Doped Carbonized Metal-Organic Framework Cathode with High Power and Long Cyclability.
    Cheng CF; Chen YM; Zou F; Liu K; Xia Y; Huang YF; Tung WY; Krishnan MR; Vogt BD; Wang CL; Ho RM; Zhu Y
    ACS Appl Mater Interfaces; 2019 Aug; 11(34):30694-30702. PubMed ID: 31373480
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robust and Fast Lithium Storage Enabled by Polypyrrole-Coated Nitrogen and Phosphorus Co-Doped Hollow Carbon Nanospheres for Lithium-Ion Capacitors.
    Zhang M; Zheng X; Mu J; Liu P; Yuan W; Li S; Wang X; Fang H; Liu H; Xing T; Hu H; Wu M
    Front Chem; 2021; 9():760473. PubMed ID: 34631673
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A High-Performance Lithium-Ion Capacitor Based on 2D Nanosheet Materials.
    Li S; Chen J; Cui M; Cai G; Wang J; Cui P; Gong X; Lee PS
    Small; 2017 Feb; 13(6):. PubMed ID: 27893190
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MnCO
    Natarajan S; Akshay M; Aravindan V
    Small; 2023 Apr; 19(17):e2206226. PubMed ID: 36693780
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High Performance Lithium-Ion Hybrid Capacitors Employing Fe
    Zhang S; Li C; Zhang X; Sun X; Wang K; Ma Y
    ACS Appl Mater Interfaces; 2017 May; 9(20):17136-17144. PubMed ID: 28474525
    [TBL] [Abstract][Full Text] [Related]  

  • 11. All alginate-derived high-performance T-Nb
    Li M; Fang Y; Li J; Sun B; Du J; Liu Q; Zhang D
    RSC Adv; 2022 Feb; 12(10):5743-5748. PubMed ID: 35424551
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High Capacitive Storage Performance of Sulfur and Nitrogen Codoped Mesoporous Graphene.
    Ma X; Gao D
    ChemSusChem; 2018 Mar; 11(6):1048-1055. PubMed ID: 29377606
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Boosting Capacitive Sodium-Ion Storage in Electrochemically Exfoliated Graphite for Sodium-Ion Capacitors.
    Huang T; Liu Z; Yu F; Wang F; Li D; Fu L; Chen Y; Wang H; Xie Q; Yao S; Wu Y
    ACS Appl Mater Interfaces; 2020 Nov; 12(47):52635-52642. PubMed ID: 33185093
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sodium Ion Capacitor Using Pseudocapacitive Layered Ferric Vanadate Nanosheets Cathode.
    Wei Q; Jiang Y; Qian X; Zhang L; Li Q; Tan S; Zhao K; Yang W; An Q; Guo J; Mai L
    iScience; 2018 Aug; 6():212-221. PubMed ID: 30240611
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A high-power lithium-ion hybrid capacitor based on a hollow N-doped carbon nanobox anode and its porous analogue cathode.
    Liang T; Wang H; Fei R; Wang R; He B; Gong Y; Yan C
    Nanoscale; 2019 Nov; 11(43):20715-20724. PubMed ID: 31642836
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxidized-Polydopamine-Coated Graphene Anodes and N,P Codoped Porous Foam Structure Activated Carbon Cathodes for High-Energy-Density Lithium-Ion Capacitors.
    Xiao Y; He D; Peng W; Chen S; Liu J; Chen H; Xin S; Bai Y
    ACS Appl Mater Interfaces; 2021 Mar; 13(8):10336-10348. PubMed ID: 33599127
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Defect-rich and N-doped hard carbon as a sustainable anode for high-energy lithium-ion capacitors.
    Jiang J; Zhang Y; Li Z; An Y; Zhu Q; Xu Y; Zang S; Dou H; Zhang X
    J Colloid Interface Sci; 2020 May; 567():75-83. PubMed ID: 32036116
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Achieving High-Energy-Density Graphene/Single-Walled Carbon Nanotube Lithium-Ion Capacitors from Organic-Based Electrolytes.
    Yin H; Tang J; Zhang K; Lin S; Xu G; Qin LC
    Nanomaterials (Basel); 2023 Dec; 14(1):. PubMed ID: 38202500
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insights into Enhanced Capacitive Behavior of Carbon Cathode for Lithium Ion Capacitors: The Coupling of Pore Size and Graphitization Engineering.
    Zou K; Cai P; Wang B; Liu C; Li J; Qiu T; Zou G; Hou H; Ji X
    Nanomicro Lett; 2020 Jun; 12(1):121. PubMed ID: 34138143
    [TBL] [Abstract][Full Text] [Related]  

  • 20. All-Covalent Organic Framework Nanofilms Assembled Lithium-Ion Capacitor to Solve the Imbalanced Charge Storage Kinetics.
    Xu X; Zhang J; Zhang Z; Lu G; Cao W; Wang N; Xia Y; Feng Q; Qiao S
    Nanomicro Lett; 2024 Feb; 16(1):116. PubMed ID: 38358567
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.