BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

344 related articles for article (PubMed ID: 29708761)

  • 21. High-Energy and High-Power Nonaqueous Lithium-Ion Capacitors Based on Polypyrrole/Carbon Nanotube Composites as Pseudocapacitive Cathodes.
    Han C; Shi R; Zhou D; Li H; Xu L; Zhang T; Li J; Kang F; Wang G; Li B
    ACS Appl Mater Interfaces; 2019 May; 11(17):15646-15655. PubMed ID: 30945842
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Boost Anion Storage Capacity Using Conductive Polymer as a Pseudocapacitive Cathode for High-Energy and Flexible Lithium Ion Capacitors.
    Han C; Tong J; Tang X; Zhou D; Duan H; Li B; Wang G
    ACS Appl Mater Interfaces; 2020 Mar; 12(9):10479-10489. PubMed ID: 32049486
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Homologous Strategy to Construct High-Performance Coupling Electrodes for Advanced Potassium-Ion Hybrid Capacitors.
    Xu Y; Ruan J; Pang Y; Sun H; Liang C; Li H; Yang J; Zheng S
    Nanomicro Lett; 2020 Oct; 13(1):14. PubMed ID: 34138205
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quinone/ester-based oxygen functional group-incorporated full carbon Li-ion capacitor for enhanced performance.
    Cai P; Zou K; Zou G; Hou H; Ji X
    Nanoscale; 2020 Feb; 12(6):3677-3685. PubMed ID: 31993622
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 3D Hierarchically Structured CoS Nanosheets: Li
    Wang YK; Liu MC; Cao J; Zhang HJ; Kong LB; Trudgeon DP; Li X; Walsh FC
    ACS Appl Mater Interfaces; 2020 Jan; 12(3):3709-3718. PubMed ID: 31860261
    [TBL] [Abstract][Full Text] [Related]  

  • 26. New Class of High-Energy, High-Power Capacitive Devices Enabled by Stabilized Lithium Metal Anodes.
    Shaibani M; Abedin MJ; Sharifzadeh Mirshekarloo M; Griffith JC; Singh R; Aitchison P; Hill MR; Majumder M
    ACS Appl Mater Interfaces; 2023 Aug; 15(31):37454-37466. PubMed ID: 37506322
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Encapsulation of Fe
    Li Y; Liang T; Wang R; He B; Gong Y; Wang H
    ACS Appl Mater Interfaces; 2019 May; 11(21):19115-19122. PubMed ID: 31062955
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Embedding Co
    Peng Y; Liu H; Li Y; Song Y; Zhang C; Wang G
    J Colloid Interface Sci; 2021 Aug; 596():130-138. PubMed ID: 33839347
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Revealing the Self-Doping Defects in Carbon Materials for the Compact Capacitive Energy Storage of Zn-Ion Capacitors.
    Yuan R; Wang H; Shang L; Hou R; Dong Y; Li Y; Zhang S; Chen X; Song H
    ACS Appl Mater Interfaces; 2023 Jan; 15(2):3006-3016. PubMed ID: 36601866
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Beyond Activated Carbon: Graphite-Cathode-Derived Li-Ion Pseudocapacitors with High Energy and High Power Densities.
    Wang G; Oswald S; Löffler M; Müllen K; Feng X
    Adv Mater; 2019 Apr; 31(14):e1807712. PubMed ID: 30767311
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Binder-free boron-doped Si nanowires toward the enhancement of lithium-ion capacitor.
    Li M; Song S; Li Y; Jevasuwan W; Fukata N; Bae J
    Nanotechnology; 2023 Jun; 34(35):. PubMed ID: 37207636
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nitrogen and Phosphorus Dual-Doped Multilayer Graphene as Universal Anode for Full Carbon-Based Lithium and Potassium Ion Capacitors.
    Luan Y; Hu R; Fang Y; Zhu K; Cheng K; Yan J; Ye K; Wang G; Cao D
    Nanomicro Lett; 2019 Apr; 11(1):30. PubMed ID: 34137976
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Mechanically Flexible Necklace-Like Architecture for Achieving Fast Charging and High Capacity in Advanced Lithium-Ion Capacitors.
    Liang T; Mao Z; Li L; Wang R; He B; Gong Y; Jin J; Yan C; Wang H
    Small; 2022 Jul; 18(27):e2201792. PubMed ID: 35661404
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Kinetically well-matched porous framework dual carbon electrodes for high-performance sodium-ion hybrid capacitors.
    Li C; Cao K; Fan Y; Li Q; Zhang Y; Guo Z
    J Colloid Interface Sci; 2023 Dec; 652(Pt B):1356-1366. PubMed ID: 37659305
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A New Free-Standing Aqueous Zinc-Ion Capacitor Based on MnO
    Wang S; Wang Q; Zeng W; Wang M; Ruan L; Ma Y
    Nanomicro Lett; 2019 Aug; 11(1):70. PubMed ID: 34138022
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Low-crystalline iron oxide hydroxide nanoparticle anode for high-performance supercapacitors.
    Owusu KA; Qu L; Li J; Wang Z; Zhao K; Yang C; Hercule KM; Lin C; Shi C; Wei Q; Zhou L; Mai L
    Nat Commun; 2017 Mar; 8():14264. PubMed ID: 28262797
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Holey Ti
    Zhou HY; Lin LW; Sui ZY; Wang HY; Han BH
    ACS Appl Mater Interfaces; 2023 Mar; 15(9):12161-12170. PubMed ID: 36812348
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electrochemically Generated γ-Li
    Divya ML; Aravindan V
    Chem Asian J; 2019 Dec; 14(24):4665-4672. PubMed ID: 31403253
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fluorine-Enriched Graphdiyne as an Efficient Anode in Lithium-Ion Capacitors.
    Shen X; He J; Wang K; Li X; Wang X; Yang Z; Wang N; Zhang Y; Huang C
    ChemSusChem; 2019 Apr; 12(7):1342-1348. PubMed ID: 30710428
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A high energy and power Li-ion capacitor based on a TiO2 nanobelt array anode and a graphene hydrogel cathode.
    Wang H; Guan C; Wang X; Fan HJ
    Small; 2015 Mar; 11(12):1470-7. PubMed ID: 25366170
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.