BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 29708892)

  • 1. Continuous Negative Abdominal Pressure Reduces Ventilator-induced Lung Injury in a Porcine Model.
    Yoshida T; Engelberts D; Otulakowski G; Katira B; Post M; Ferguson ND; Brochard L; Amato MBP; Kavanagh BP
    Anesthesiology; 2018 Jul; 129(1):163-172. PubMed ID: 29708892
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of positive end-expiratory pressure by volumetric capnography variables in lavage-induced acute lung injury.
    Yang Y; Huang Y; Tang R; Chen Q; Hui X; Li Y; Yu Q; Zhao H; Qiu H
    Respiration; 2014; 87(1):75-83. PubMed ID: 24296453
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuous negative abdominal pressure: mechanism of action and comparison with prone position.
    Yoshida T; Engelberts D; Otulakowski G; Katira B; Ferguson ND; Brochard L; Amato MBP; Kavanagh BP
    J Appl Physiol (1985); 2018 Jul; 125(1):107-116. PubMed ID: 29596015
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of transpulmonary pressure-guided positive end-expiratory pressure titration on lung injury in pigs with acute respiratory distress syndrome.
    Wu X; Zheng R; Zhuang Z
    J Clin Monit Comput; 2020 Feb; 34(1):151-159. PubMed ID: 30903412
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Airway pressure release ventilation prevents ventilator-induced lung injury in normal lungs.
    Emr B; Gatto LA; Roy S; Satalin J; Ghosh A; Snyder K; Andrews P; Habashi N; Marx W; Ge L; Wang G; Dean DA; Vodovotz Y; Nieman G
    JAMA Surg; 2013 Nov; 148(11):1005-12. PubMed ID: 24026214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of Chest Wall Modifications and Lung Injury on the Correspondence Between Airway and Transpulmonary Driving Pressures.
    Cortes-Puentes GA; Keenan JC; Adams AB; Parker ED; Dries DJ; Marini JJ
    Crit Care Med; 2015 Aug; 43(8):e287-95. PubMed ID: 26186478
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spontaneous breathing during lung-protective ventilation in an experimental acute lung injury model: high transpulmonary pressure associated with strong spontaneous breathing effort may worsen lung injury.
    Yoshida T; Uchiyama A; Matsuura N; Mashimo T; Fujino Y
    Crit Care Med; 2012 May; 40(5):1578-85. PubMed ID: 22430241
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of optimal PEEP for equal distribution of tidal volume by volumetric capnography and electrical impedance tomography during decreasing levels of PEEP in post cardiac-surgery patients.
    Blankman P; Shono A; Hermans BJ; Wesselius T; Hasan D; Gommers D
    Br J Anaesth; 2016 Jun; 116(6):862-9. PubMed ID: 27199318
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How much esophageal pressure-guided end-expiratory transpulmonary pressure is sufficient to maintain lung recruitment in lavage-induced lung injury?
    Huang Y; Tang R; Chen Q; Pan C; Liu S; Hui X; Li Y; Yang Y; Ranieri VM; Qiu H
    J Trauma Acute Care Surg; 2016 Feb; 80(2):302-7. PubMed ID: 26517781
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Individual Positive End-expiratory Pressure Settings Optimize Intraoperative Mechanical Ventilation and Reduce Postoperative Atelectasis.
    Pereira SM; Tucci MR; Morais CCA; Simões CM; Tonelotto BFF; Pompeo MS; Kay FU; Pelosi P; Vieira JE; Amato MBP
    Anesthesiology; 2018 Dec; 129(6):1070-1081. PubMed ID: 30260897
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Individualized Positive End-expiratory Pressure and Regional Gas Exchange in Porcine Lung Injury.
    Muders T; Luepschen H; Meier T; Reske AW; Zinserling J; Kreyer S; Pikkemaat R; Maripu E; Leonhardt S; Hedenstierna G; Putensen C; Wrigge H
    Anesthesiology; 2020 Apr; 132(4):808-824. PubMed ID: 32101968
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic lung aeration and strain with positive end-expiratory pressure individualized to maximal compliance versus ARDSNet low-stretch strategy: a study in a surfactant depletion model of lung injury.
    Zeng C; Zhu M; Motta-Ribeiro G; Lagier D; Hinoshita T; Zang M; Grogg K; Winkler T; Vidal Melo MF
    Crit Care; 2023 Aug; 27(1):307. PubMed ID: 37537654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Does Iso-mechanical Power Lead to Iso-lung Damage?: An Experimental Study in a Porcine Model.
    Vassalli F; Pasticci I; Romitti F; Duscio E; Aßmann DJ; Grünhagen H; Vasques F; Bonifazi M; Busana M; Macrì MM; Giosa L; Reupke V; Herrmann P; Hahn G; Leopardi O; Moerer O; Quintel M; Marini JJ; Gattinoni L
    Anesthesiology; 2020 May; 132(5):1126-1137. PubMed ID: 32032095
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of positive end-expiratory pressure on lung injury and haemodynamics during experimental acute respiratory distress syndrome treated with extracorporeal membrane oxygenation and near-apnoeic ventilation.
    Araos J; Alegria L; Garcia A; Cruces P; Soto D; Erranz B; Salomon T; Medina T; Garcia P; Dubó S; Bachmann MC; Basoalto R; Valenzuela ED; Rovegno M; Vera M; Retamal J; Cornejo R; Bugedo G; Bruhn A
    Br J Anaesth; 2021 Nov; 127(5):807-814. PubMed ID: 34507822
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of mechanical ventilation strategy on dissemination of intratracheally instilled Escherichia coli in dogs.
    Nahum A; Hoyt J; Schmitz L; Moody J; Shapiro R; Marini JJ
    Crit Care Med; 1997 Oct; 25(10):1733-43. PubMed ID: 9377891
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Near-Apneic Ventilation Decreases Lung Injury and Fibroproliferation in an Acute Respiratory Distress Syndrome Model with Extracorporeal Membrane Oxygenation.
    Araos J; Alegria L; Garcia P; Cruces P; Soto D; Erranz B; Amthauer M; Salomon T; Medina T; Rodriguez F; Ayala P; Borzone GR; Meneses M; Damiani F; Retamal J; Cornejo R; Bugedo G; Bruhn A
    Am J Respir Crit Care Med; 2019 Mar; 199(5):603-612. PubMed ID: 30216736
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuous negative abdominal distension augments recruitment of atelectatic lung.
    Chierichetti M; Engelberts D; El-Khuffash A; Babyn P; Post M; Kavanagh BP
    Crit Care Med; 2012 Jun; 40(6):1864-72. PubMed ID: 22610189
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bedside Contribution of Electrical Impedance Tomography to Setting Positive End-Expiratory Pressure for Extracorporeal Membrane Oxygenation-treated Patients with Severe Acute Respiratory Distress Syndrome.
    Franchineau G; Bréchot N; Lebreton G; Hekimian G; Nieszkowska A; Trouillet JL; Leprince P; Chastre J; Luyt CE; Combes A; Schmidt M
    Am J Respir Crit Care Med; 2017 Aug; 196(4):447-457. PubMed ID: 28103448
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Continuous external negative pressure improves oxygenation and respiratory mechanics in Experimental Lung Injury in Pigs - A pilot proof-of-concept trial.
    Scharffenberg M; Wittenstein J; Herzog M; Tauer S; Vivona L; Theilen R; Bluth T; Kiss T; Koch T; Fiorentino G; de Abreu MG; Huhle R
    Intensive Care Med Exp; 2020 Dec; 8(Suppl 1):49. PubMed ID: 33336263
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increasing tidal volumes and pulmonary overdistention adversely affect pulmonary vascular mechanics and cardiac output in a pediatric swine model.
    Cheifetz IM; Craig DM; Quick G; McGovern JJ; Cannon ML; Ungerleider RM; Smith PK; Meliones JN
    Crit Care Med; 1998 Apr; 26(4):710-6. PubMed ID: 9559609
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.