BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 29709181)

  • 1. Observation of Ultrafast Vibrational Energy Transfer in Fibrinogen and Fibrin Fibers.
    Dutta B; Vos BE; Rezus YLA; Koenderink GH; Bakker HJ
    J Phys Chem B; 2018 Jun; 122(22):5870-5876. PubMed ID: 29709181
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Does topology drive fiber polymerization?
    Huang L; Hsiao JP; Powierza C; Taylor RM; Lord ST
    Biochemistry; 2014 Dec; 53(49):7824-34. PubMed ID: 25419972
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The isolation of fibrinogen monomer dramatically influences fibrin polymerization.
    Huang L; Lord ST
    Thromb Res; 2013 Jun; 131(6):e258-63. PubMed ID: 23622556
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of fibrinogen carbamylation on fibrin clot formation and stability.
    Binder V; Bergum B; Jaisson S; Gillery P; Scavenius C; Spriet E; Nyhaug AK; Roberts HM; Chapple ILC; Hellvard A; Delaleu N; Mydel P
    Thromb Haemost; 2017 May; 117(5):899-910. PubMed ID: 28382370
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mode-specific vibrational energy relaxation of amide I' and II' modes in N-methylacetamide/water clusters: intra- and intermolecular energy transfer mechanisms.
    Zhang Y; Fujisaki H; Straub JE
    J Phys Chem A; 2009 Apr; 113(13):3051-60. PubMed ID: 19320512
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Release of fibrinopeptides by the slow and fast forms of thrombin.
    Vindigni A; Di Cera E
    Biochemistry; 1996 Apr; 35(14):4417-26. PubMed ID: 8605191
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence that catalytically-inactivated thrombin forms non-covalently linked dimers that bridge between fibrin/fibrinogen fibers and enhance fibrin polymerization.
    Mosesson MW; Hernandez I; Siebenlist KR
    Biophys Chem; 2004 Jul; 110(1-2):93-100. PubMed ID: 15223147
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amide I'-II' 2D IR spectroscopy provides enhanced protein secondary structural sensitivity.
    Deflores LP; Ganim Z; Nicodemus RA; Tokmakoff A
    J Am Chem Soc; 2009 Mar; 131(9):3385-91. PubMed ID: 19256572
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fibrinogen and fibrin polymerization: appraisal of the binding events that accompany fibrin generation and fibrin clot assembly.
    Mosesson MW
    Blood Coagul Fibrinolysis; 1997 Jul; 8(5):257-67. PubMed ID: 9282789
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fibrinogen and fibrin polymerization and functions.
    Mosesson MW
    Blood Coagul Fibrinolysis; 1999 Feb; 10 Suppl 1():S45-8. PubMed ID: 10070818
    [No Abstract]   [Full Text] [Related]  

  • 11. Fibrin self-assembly is adapted to oxidation.
    Rosenfeld MA; Bychkova AV; Shchegolikhin AN; Leonova VB; Kostanova EA; Biryukova MI; Sultimova NB; Konstantinova ML
    Free Radic Biol Med; 2016 Jun; 95():55-64. PubMed ID: 26969792
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics of the interaction of desAABB-fibrin monomer with immobilized fibrinogen.
    Chtcheglova LA; Vogel M; Gruber HJ; Dietler G; Haeberli A
    Biopolymers; 2006 Sep; 83(1):69-82. PubMed ID: 16639743
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards understanding the effect of fibrinogen interactions on fibrin gel structure.
    Nelson AC; Fogelson AL
    Phys Rev E; 2023 Feb; 107(2-1):024413. PubMed ID: 36932478
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of fibrinogen D domain intermolecular association sites in the polymerization of fibrin and fibrinogen Tokyo II (gamma 275 Arg-->Cys).
    Mosesson MW; Siebenlist KR; DiOrio JP; Matsuda M; Hainfeld JF; Wall JS
    J Clin Invest; 1995 Aug; 96(2):1053-8. PubMed ID: 7635941
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Force spectroscopy of the fibrin(ogen)-fibrinogen interaction.
    Chtcheglova LA; Haeberli A; Dietler G
    Biopolymers; 2008 Apr; 89(4):292-301. PubMed ID: 18098176
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coarse-grained molecular dynamics simulations of fibrin polymerization: effects of thrombin concentration on fibrin clot structure.
    Yesudasan S; Wang X; Averett RD
    J Mol Model; 2018 Apr; 24(5):109. PubMed ID: 29623504
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A modular fibrinogen model that captures the stress-strain behavior of fibrin fibers.
    Averett RD; Menn B; Lee EH; Helms CC; Barker T; Guthold M
    Biophys J; 2012 Oct; 103(7):1537-44. PubMed ID: 23062346
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tracking oxidation-induced alterations in fibrin clot formation by NMR-based methods.
    Lau WH; White NJ; Yeo TW; Gruen RL; Pervushin K
    Sci Rep; 2021 Aug; 11(1):15691. PubMed ID: 34344919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of acetylsalicylic acid on increase of fibrin network porosity and the consequent upregulation of fibrinolysis.
    He S; Bark N; Wang H; Svensson J; Blombäck M
    J Cardiovasc Pharmacol; 2009 Jan; 53(1):24-9. PubMed ID: 19129740
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modification of fibrin network ultrastructure by Fab fragments specific for different domain of fibrinogen.
    Cierniewski CS; Janiak A; Wyroba E
    Acta Biochim Pol; 1986; 33(3):195-202. PubMed ID: 2433859
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.