These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 29709206)

  • 21. Brain-computer interfaces for basic neuroscience.
    Batista A
    Handb Clin Neurol; 2020; 168():233-247. PubMed ID: 32164855
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Accessing the neural drive to muscle and translation to neurorehabilitation technologies.
    Farina D; Negro F
    IEEE Rev Biomed Eng; 2012; 5():3-14. PubMed ID: 23231985
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Perception as a Route for Motor Skill Learning: Perspectives from Neuroscience.
    Ossmy O; Mukamel R
    Neuroscience; 2018 Jul; 382():144-153. PubMed ID: 29694916
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Brain-machine interfaces in neurorehabilitation of stroke.
    Soekadar SR; Birbaumer N; Slutzky MW; Cohen LG
    Neurobiol Dis; 2015 Nov; 83():172-9. PubMed ID: 25489973
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Principles of Neurorehabilitation After Stroke Based on Motor Learning and Brain Plasticity Mechanisms.
    Maier M; Ballester BR; Verschure PFMJ
    Front Syst Neurosci; 2019; 13():74. PubMed ID: 31920570
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [The Meaning of "Understanding the Brain": Peeking into the Brain of a Computational Neuroscientist].
    Tanaka H
    Brain Nerve; 2016 Nov; 68(11):1379-1384. PubMed ID: 27852028
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Neurorehabilitation in upper limb amputation: understanding how neurophysiological changes can affect functional rehabilitation.
    Wheaton LA
    J Neuroeng Rehabil; 2017 May; 14(1):41. PubMed ID: 28532464
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Neuroscience based strategies for neurorehabilitation].
    Miyai I
    Brain Nerve; 2007 Apr; 59(4):347-55. PubMed ID: 17447521
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Artificial neural networks in neurorehabilitation: A scoping review.
    Moon S; Ahmadnezhad P; Song HJ; Thompson J; Kipp K; Akinwuntan AE; Devos H
    NeuroRehabilitation; 2020; 46(3):259-269. PubMed ID: 32250332
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identifying the neural representation of fast and slow states in force field adaptation via fMRI.
    Farrens AJ; Sergi F
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():1007-1012. PubMed ID: 31374761
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Construction of efficacious gait and upper limb functional interventions based on brain plasticity evidence and model-based measures for stroke patients.
    Daly JJ; Ruff RL
    ScientificWorldJournal; 2007 Dec; 7():2031-45. PubMed ID: 18167618
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Brain computer interfaces for neurorehabilitation – its current status as a rehabilitation strategy post-stroke.
    van Dokkum LEH; Ward T; Laffont I
    Ann Phys Rehabil Med; 2015 Feb; 58(1):3-8. PubMed ID: 25614021
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Determining optimal mobile neurofeedback methods for motor neurorehabilitation in children and adults with non-progressive neurological disorders: a scoping review.
    Behboodi A; Lee WA; Hinchberger VS; Damiano DL
    J Neuroeng Rehabil; 2022 Sep; 19(1):104. PubMed ID: 36171602
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Brain-Machine Interfaces: From Basic Science to Neuroprostheses and Neurorehabilitation.
    Lebedev MA; Nicolelis MA
    Physiol Rev; 2017 Apr; 97(2):767-837. PubMed ID: 28275048
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Virtual Reality as a Vehicle to Empower Motor-Cognitive Neurorehabilitation.
    Perez-Marcos D; Bieler-Aeschlimann M; Serino A
    Front Psychol; 2018; 9():2120. PubMed ID: 30450069
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Neuroscience-Inspired Artificial Intelligence.
    Hassabis D; Kumaran D; Summerfield C; Botvinick M
    Neuron; 2017 Jul; 95(2):245-258. PubMed ID: 28728020
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Systematic Review of Virtual Reality and Robot Therapy as Recent Rehabilitation Technologies Using EEG-Brain-Computer Interface Based on Movement-Related Cortical Potentials.
    Said RR; Heyat MBB; Song K; Tian C; Wu Z
    Biosensors (Basel); 2022 Dec; 12(12):. PubMed ID: 36551100
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Computational models and motor learning paradigms: Could they provide insights for neuroplasticity after stroke? An overview.
    Kiper P; Szczudlik A; Venneri A; Stozek J; Luque-Moreno C; Opara J; Baba A; Agostini M; Turolla A
    J Neurol Sci; 2016 Oct; 369():141-148. PubMed ID: 27653881
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Restoring movement representation and alleviating phantom limb pain through short-term neurorehabilitation with a virtual reality system.
    Osumi M; Ichinose A; Sumitani M; Wake N; Sano Y; Yozu A; Kumagaya S; Kuniyoshi Y; Morioka S
    Eur J Pain; 2017 Jan; 21(1):140-147. PubMed ID: 27378656
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.