These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 29709206)

  • 41. The Effects of Sensory Manipulations on Motor Behavior: From Basic Science to Clinical Rehabilitation.
    Sugiyama T; Liew SL
    J Mot Behav; 2017; 49(1):67-77. PubMed ID: 27935445
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Neuroscience insights improve neurorehabilitation of poststroke aphasia.
    Berthier ML; Pulvermüller F
    Nat Rev Neurol; 2011 Feb; 7(2):86-97. PubMed ID: 21297651
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Multinetwork Motor Learning as a Model for Dance in Neurorehabilitation.
    Barnstaple R
    Adv Exp Med Biol; 2021; 1338():239-245. PubMed ID: 34973031
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Review on motor imagery based BCI systems for upper limb post-stroke neurorehabilitation: From designing to application.
    Khan MA; Das R; Iversen HK; Puthusserypady S
    Comput Biol Med; 2020 Aug; 123():103843. PubMed ID: 32768038
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Education and visual neuroscience: A mini-review.
    Chen L
    Psych J; 2020 Aug; 9(4):524-532. PubMed ID: 31884725
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Learning and transfer of complex motor skills in virtual reality: a perspective review.
    Levac DE; Huber ME; Sternad D
    J Neuroeng Rehabil; 2019 Oct; 16(1):121. PubMed ID: 31627755
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Single session motor learning demonstrated using a visuomotor task: Evidence from fMRI and behavioural analysis.
    Boe SG; Cassidy RJ; McIlroy WE; Graham SJ
    J Neurosci Methods; 2012 Aug; 209(2):308-19. PubMed ID: 22743802
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Important Movement Concepts: Clinical Versus Neuroscience Perspectives.
    Vaughan-Graham J; Patterson K; Zabjek K; Cott CA
    Motor Control; 2019 Jul; 23(3):273-293. PubMed ID: 30696388
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Neuromechanical principles underlying movement modularity and their implications for rehabilitation.
    Ting LH; Chiel HJ; Trumbower RD; Allen JL; McKay JL; Hackney ME; Kesar TM
    Neuron; 2015 Apr; 86(1):38-54. PubMed ID: 25856485
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Computational principles of movement neuroscience.
    Wolpert DM; Ghahramani Z
    Nat Neurosci; 2000 Nov; 3 Suppl():1212-7. PubMed ID: 11127840
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Upper limb robotics applied to neurorehabilitation: An overview of clinical practice.
    Duret C; Mazzoleni S
    NeuroRehabilitation; 2017; 41(1):5-15. PubMed ID: 28505985
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Exoskeleton and End-Effector Robots for Upper and Lower Limbs Rehabilitation: Narrative Review.
    Molteni F; Gasperini G; Cannaviello G; Guanziroli E
    PM R; 2018 Sep; 10(9 Suppl 2):S174-S188. PubMed ID: 30269804
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Neurorehabilitation Improves the Motor Features in Prodromal SCA2: A Randomized, Controlled Trial.
    Velázquez-Pérez L; Rodríguez-Diaz JC; Rodríguez-Labrada R; Medrano-Montero J; Aguilera Cruz AB; Reynaldo-Cejas L; Góngora-Marrero M; Estupiñán-Rodríguez A; Vázquez-Mojena Y; Torres-Vega R
    Mov Disord; 2019 Jul; 34(7):1060-1068. PubMed ID: 30958572
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Learning from learning: what can visuomotor adaptations tell us about the neuronal representation of movement?
    Paz R; Vaadia E
    Adv Exp Med Biol; 2009; 629():221-42. PubMed ID: 19227502
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Translating the science into practice: shaping rehabilitation practice to enhance recovery after brain damage.
    Winstein CJ; Kay DB
    Prog Brain Res; 2015; 218():331-60. PubMed ID: 25890145
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The neuroscience of recovery and rehabilitation: what have we learned from animal research?
    Turkstra LS; Holland AL; Bays GA
    Arch Phys Med Rehabil; 2003 Apr; 84(4):604-12. PubMed ID: 12690601
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Brain-computer interfaces and virtual reality for neurorehabilitation.
    Leeb R; Pérez-Marcos D
    Handb Clin Neurol; 2020; 168():183-197. PubMed ID: 32164852
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Neurorehabilitation approaches to facilitate motor recovery.
    Hömberg V
    Handb Clin Neurol; 2013; 110():161-73. PubMed ID: 23312639
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Citation Network Study on the Use of New Technologies in Neurorehabilitation.
    Abuín-Porras V; Martinez-Perez C; Romero-Morales C; Cano-de-la-Cuerda R; Martín-Casas P; Palomo-López P; Sánchez-Tena MÁ
    Int J Environ Res Public Health; 2021 Dec; 19(1):. PubMed ID: 35010288
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Application of BCI systems in neurorehabilitation: a scoping review.
    Bamdad M; Zarshenas H; Auais MA
    Disabil Rehabil Assist Technol; 2015; 10(5):355-64. PubMed ID: 25560222
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.