These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
218 related articles for article (PubMed ID: 29709325)
1. 3D biomaterial matrix to support long term, full thickness, immuno-competent human skin equivalents with nervous system components. Vidal SEL; Tamamoto KA; Nguyen H; Abbott RD; Cairns DM; Kaplan DL Biomaterials; 2019 Apr; 198():194-203. PubMed ID: 29709325 [TBL] [Abstract][Full Text] [Related]
2. Fabrication of duck's feet collagen-silk hybrid biomaterial for tissue engineering. Kim SH; Park HS; Lee OJ; Chao JR; Park HJ; Lee JM; Ju HW; Moon BM; Park YR; Song JE; Khang G; Park CH Int J Biol Macromol; 2016 Apr; 85():442-50. PubMed ID: 26748068 [TBL] [Abstract][Full Text] [Related]
3. Silk fiber reinforcement modulates in vitro chondrogenesis in 3D composite scaffolds. Singh YP; Adhikary M; Bhardwaj N; Bhunia BK; Mandal BB Biomed Mater; 2017 Jul; 12(4):045012. PubMed ID: 28737162 [TBL] [Abstract][Full Text] [Related]
4. A denatured collagen microfiber scaffold seeded with human fibroblasts and keratinocytes for skin grafting. Kempf M; Miyamura Y; Liu PY; Chen AC; Nakamura H; Shimizu H; Tabata Y; Kimble RM; McMillan JR Biomaterials; 2011 Jul; 32(21):4782-92. PubMed ID: 21477857 [TBL] [Abstract][Full Text] [Related]
5. Artificial skin--culturing of different skin cell lines for generating an artificial skin substitute on cross-weaved spider silk fibres. Wendt H; Hillmer A; Reimers K; Kuhbier JW; Schäfer-Nolte F; Allmeling C; Kasper C; Vogt PM PLoS One; 2011; 6(7):e21833. PubMed ID: 21814557 [TBL] [Abstract][Full Text] [Related]
6. In vitro 3D full-thickness skin-equivalent tissue model using silk and collagen biomaterials. Bellas E; Seiberg M; Garlick J; Kaplan DL Macromol Biosci; 2012 Dec; 12(12):1627-36. PubMed ID: 23161763 [TBL] [Abstract][Full Text] [Related]
7. Replacement of animal-derived collagen matrix by human fibroblast-derived dermal matrix for human skin equivalent products. El Ghalbzouri A; Commandeur S; Rietveld MH; Mulder AA; Willemze R Biomaterials; 2009 Jan; 30(1):71-8. PubMed ID: 18838164 [TBL] [Abstract][Full Text] [Related]
8. A digital light processing 3D-printed artificial skin model and full-thickness wound models using silk fibroin bioink. Choi KY; Ajiteru O; Hong H; Suh YJ; Sultan MT; Lee H; Lee JS; Lee YJ; Lee OJ; Kim SH; Park CH Acta Biomater; 2023 Jul; 164():159-174. PubMed ID: 37121370 [TBL] [Abstract][Full Text] [Related]
9. E-spun composite fibers of collagen and dragline silk protein: fiber mechanics, biocompatibility, and application in stem cell differentiation. Zhu B; Li W; Lewis RV; Segre CU; Wang R Biomacromolecules; 2015 Jan; 16(1):202-13. PubMed ID: 25405355 [TBL] [Abstract][Full Text] [Related]
10. Biocompatible Silk Noil-Based Three-Dimensional Carded-Needled Nonwoven Scaffolds Guide the Engineering of Novel Skin Connective Tissue. Chiarini A; Freddi G; Liu D; Armato U; Dal Prà I Tissue Eng Part A; 2016 Aug; 22(15-16):1047-60. PubMed ID: 27411949 [TBL] [Abstract][Full Text] [Related]
11. Red light accelerates the formation of a human dermal equivalent. Oliveira AC; Morais TF; Bernal C; Martins VC; Plepis AM; Menezes PF; Perussi JR J Biomater Appl; 2018 Apr; 32(9):1265-1275. PubMed ID: 29475416 [TBL] [Abstract][Full Text] [Related]
12. Silk-Reinforced Collagen Hydrogels with Raised Multiscale Stiffness for Mesenchymal Cells 3D Culture. Sanz-Fraile H; Amoros S; Mendizabal I; Galvez-Monton C; Prat-Vidal C; Bayes-Genis A; Navajas D; Farre R; Otero J Tissue Eng Part A; 2020 Mar; 26(5-6):358-370. PubMed ID: 32085691 [TBL] [Abstract][Full Text] [Related]
13. Co-effect of silk and amniotic membrane for tendon repair. Seo YK; Kim JH; Eo SR J Biomater Sci Polym Ed; 2016 Aug; 27(12):1232-47. PubMed ID: 27188627 [TBL] [Abstract][Full Text] [Related]
14. Silk scaffolds connected with different naturally occurring biomaterials for prostate cancer cell cultivation in 3D. Bäcker A; Erhardt O; Wietbrock L; Schel N; Göppert B; Dirschka M; Abaffy P; Sollich T; Cecilia A; Gruhl FJ Biopolymers; 2017 Feb; 107(2):70-79. PubMed ID: 27696348 [TBL] [Abstract][Full Text] [Related]
15. The rapid anastomosis between prevascularized networks on silk fibroin scaffolds generated in vitro with cocultures of human microvascular endothelial and osteoblast cells and the host vasculature. Unger RE; Ghanaati S; Orth C; Sartoris A; Barbeck M; Halstenberg S; Motta A; Migliaresi C; Kirkpatrick CJ Biomaterials; 2010 Sep; 31(27):6959-67. PubMed ID: 20619788 [TBL] [Abstract][Full Text] [Related]
16. The use of PEGT/PBT as a dermal scaffold for skin tissue engineering. El-Ghalbzouri A; Lamme EN; van Blitterswijk C; Koopman J; Ponec M Biomaterials; 2004 Jul; 25(15):2987-96. PubMed ID: 14967531 [TBL] [Abstract][Full Text] [Related]
17. Differentiation of human endometrial stem cells into urothelial cells on a three-dimensional nanofibrous silk-collagen scaffold: an autologous cell resource for reconstruction of the urinary bladder wall. Shoae-Hassani A; Mortazavi-Tabatabaei SA; Sharif S; Seifalian AM; Azimi A; Samadikuchaksaraei A; Verdi J J Tissue Eng Regen Med; 2015 Nov; 9(11):1268-76. PubMed ID: 23319462 [TBL] [Abstract][Full Text] [Related]
18. Silk-Based 3D Porous Scaffolds for Tissue Engineering. Xiao M; Yao J; Shao Z; Chen X ACS Biomater Sci Eng; 2024 May; 10(5):2827-2840. PubMed ID: 38690985 [TBL] [Abstract][Full Text] [Related]
19. Collagen-based biomimetic nanofibrous scaffolds: preparation and characterization of collagen/silk fibroin bicomponent nanofibrous structures. Yeo IS; Oh JE; Jeong L; Lee TS; Lee SJ; Park WH; Min BM Biomacromolecules; 2008 Apr; 9(4):1106-16. PubMed ID: 18327908 [TBL] [Abstract][Full Text] [Related]
20. Nanofibrous architecture of silk fibroin scaffolds prepared with a mild self-assembly process. Lu Q; Wang X; Lu S; Li M; Kaplan DL; Zhu H Biomaterials; 2011 Feb; 32(4):1059-67. PubMed ID: 20970185 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]