BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 29709556)

  • 41. Individual Nucleotide Resolution UV Cross-Linking and Immunoprecipitation (iCLIP) to Determine Protein-RNA Interactions.
    Sibley CR
    Methods Mol Biol; 2018; 1649():427-454. PubMed ID: 29130215
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Seten: a tool for systematic identification and comparison of processes, phenotypes, and diseases associated with RNA-binding proteins from condition-specific CLIP-seq profiles.
    Budak G; Srivastava R; Janga SC
    RNA; 2017 Jun; 23(6):836-846. PubMed ID: 28336542
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Using Native RIP, UV-CLIP or fCLIP to Address Protein-RNA Interactions In Vivo.
    Baldini L; Labialle S
    Methods Mol Biol; 2021; 2300():89-98. PubMed ID: 33792874
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Matrin3 binds directly to intronic pyrimidine-rich sequences and controls alternative splicing.
    Uemura Y; Oshima T; Yamamoto M; Reyes CJ; Costa Cruz PH; Shibuya T; Kawahara Y
    Genes Cells; 2017 Sep; 22(9):785-798. PubMed ID: 28695676
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Immunoprecipitation and SDS-PAGE for Cross-Linking Immunoprecipitation (CLIP).
    Darnell JC; Mele A; Hung KYS; Darnell RB
    Cold Spring Harb Protoc; 2018 Dec; 2018(12):. PubMed ID: 30510126
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Genome-wide identification of protein binding sites on RNAs in mammalian cells.
    Liu F; Ma T; Zhang Y
    Biochem Biophys Res Commun; 2019 Jan; 508(3):953-958. PubMed ID: 30545631
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Structure of PTB bound to RNA: specific binding and implications for splicing regulation.
    Oberstrass FC; Auweter SD; Erat M; Hargous Y; Henning A; Wenter P; Reymond L; Amir-Ahmady B; Pitsch S; Black DL; Allain FH
    Science; 2005 Sep; 309(5743):2054-7. PubMed ID: 16179478
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Advances and challenges in the detection of transcriptome-wide protein-RNA interactions.
    Wheeler EC; Van Nostrand EL; Yeo GW
    Wiley Interdiscip Rev RNA; 2018 Jan; 9(1):. PubMed ID: 28853213
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Murine polypyrimidine tract binding protein. Purification, cloning, and mapping of the RNA binding domain.
    Bothwell AL; Ballard DW; Philbrick WM; Lindwall G; Maher SE; Bridgett MM; Jamison SF; Garcia-Blanco MA
    J Biol Chem; 1991 Dec; 266(36):24657-63. PubMed ID: 1722210
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The Human RNA-Binding Proteome and Its Dynamics during Translational Arrest.
    Trendel J; Schwarzl T; Horos R; Prakash A; Bateman A; Hentze MW; Krijgsveld J
    Cell; 2019 Jan; 176(1-2):391-403.e19. PubMed ID: 30528433
    [TBL] [Abstract][Full Text] [Related]  

  • 51. CLIPing the brain: studies of protein-RNA interactions important for neurodegenerative disorders.
    Modic M; Ule J; Sibley CR
    Mol Cell Neurosci; 2013 Sep; 56():429-35. PubMed ID: 23583633
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Polypyrimidine tract-binding protein and heterogeneous nuclear ribonucleoprotein A1 bind to human T-cell leukemia virus type 2 RNA regulatory elements.
    Black AC; Luo J; Watanabe C; Chun S; Bakker A; Fraser JK; Morgan JP; Rosenblatt JD
    J Virol; 1995 Nov; 69(11):6852-8. PubMed ID: 7474099
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Robust transcriptome-wide discovery of RNA-binding protein binding sites with enhanced CLIP (eCLIP).
    Van Nostrand EL; Pratt GA; Shishkin AA; Gelboin-Burkhart C; Fang MY; Sundararaman B; Blue SM; Nguyen TB; Surka C; Elkins K; Stanton R; Rigo F; Guttman M; Yeo GW
    Nat Methods; 2016 Jun; 13(6):508-14. PubMed ID: 27018577
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Practical considerations on performing and analyzing CLIP-seq experiments to identify transcriptomic-wide RNA-protein interactions.
    Chen X; Castro SA; Liu Q; Hu W; Zhang S
    Methods; 2019 Feb; 155():49-57. PubMed ID: 30527764
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Efficient and sensitive profiling of RNA-protein interactions using TLC-CLIP.
    Ernst C; Duc J; Trono D
    Nucleic Acids Res; 2023 Jul; 51(13):e70. PubMed ID: 37283087
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Interaction of polypyrimidine tract-binding protein with the 5' noncoding region of the hepatitis C virus RNA genome and its functional requirement in internal initiation of translation.
    Ali N; Siddiqui A
    J Virol; 1995 Oct; 69(10):6367-75. PubMed ID: 7666538
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Specific binding of polypyrimidine tract binding protein and hnRNP A1 to HIV-1 CRS elements.
    Black AC; Luo J; Chun S; Bakker A; Fraser JK; Rosenblatt JD
    Virus Genes; 1996; 12(3):275-85. PubMed ID: 8883365
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mapping protein-RNA binding in plants with individual-nucleotide-resolution UV cross-linking and immunoprecipitation (plant iCLIP2).
    Lewinski M; Brüggemann M; Köster T; Reichel M; Bergelt T; Meyer K; König J; Zarnack K; Staiger D
    Nat Protoc; 2024 Apr; 19(4):1183-1234. PubMed ID: 38278964
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Improvements to the HITS-CLIP protocol eliminate widespread mispriming artifacts.
    Gillen AE; Yamamoto TM; Kline E; Hesselberth JR; Kabos P
    BMC Genomics; 2016 May; 17():338. PubMed ID: 27150721
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Human protein-RNA interaction network is highly stable across mammals.
    Ramakrishnan A; Janga SC
    BMC Genomics; 2019 Dec; 20(Suppl 12):1004. PubMed ID: 31888461
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.