These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 29709657)
1. Recovery of early neural spikes from stimulation electrodes using a DC-coupled low gain high resolution data acquisition system. Jung H; Kim J; Nam Y J Neurosci Methods; 2018 Jul; 304():118-125. PubMed ID: 29709657 [TBL] [Abstract][Full Text] [Related]
2. A retrofitted neural recording system with a novel stimulation IC to monitor early neural responses from a stimulating electrode. Nam Y; Brown EA; Ross JD; Blum RA; Wheeler BC; DeWeerth SP J Neurosci Methods; 2009 Mar; 178(1):99-102. PubMed ID: 19100770 [TBL] [Abstract][Full Text] [Related]
3. Band-tunable and multiplexed integrated circuits for simultaneous recording and stimulation with microelectrode arrays. Olsson RH; Buhl DL; Sirota AM; Buzsaki G; Wise KD IEEE Trans Biomed Eng; 2005 Jul; 52(7):1303-11. PubMed ID: 16041994 [TBL] [Abstract][Full Text] [Related]
4. Online Artifact Cancelation in Same-Electrode Neural Stimulation and Recording Using a Combined Hardware and Software Architecture. Culaclii S; Kim B; Lo YK; Li L; Liu W IEEE Trans Biomed Circuits Syst; 2018 Jun; 12(3):601-613. PubMed ID: 29877823 [TBL] [Abstract][Full Text] [Related]
5. A hybrid hardware and software approach for cancelling stimulus artifacts during same-electrode neural stimulation and recording. Culaclii S; Kim B; Yi-Kai Lo ; Wentai Liu Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():6190-6193. PubMed ID: 28269665 [TBL] [Abstract][Full Text] [Related]
6. A CMOS-based microelectrode array for interaction with neuronal cultures. Hafizovic S; Heer F; Ugniwenko T; Frey U; Blau A; Ziegler C; Hierlemann A J Neurosci Methods; 2007 Aug; 164(1):93-106. PubMed ID: 17540452 [TBL] [Abstract][Full Text] [Related]
7. Neural recording and stimulation of dissociated hippocampal cultures using microfabricated three-dimensional tip electrode array. Nam Y; Wheeler BC; Heuschkel MO J Neurosci Methods; 2006 Sep; 155(2):296-9. PubMed ID: 16494949 [TBL] [Abstract][Full Text] [Related]
8. Spectral cancellation of microstimulation artifact for simultaneous neural recording in situ. Gnadt JW; Echols SD; Yildirim A; Zhang H; Paul K IEEE Trans Biomed Eng; 2003 Oct; 50(10):1129-35. PubMed ID: 14560765 [TBL] [Abstract][Full Text] [Related]
9. From spikes to EEG: integrated multichannel and selective acquisition of neuropotentials. Mollazadeh M; Murari K; Cauwenberghs G; Thakor N Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():2741-4. PubMed ID: 19163272 [TBL] [Abstract][Full Text] [Related]
10. A versatile all-channel stimulator for electrode arrays, with real-time control. Wagenaar DA; Potter SM J Neural Eng; 2004 Mar; 1(1):39-45. PubMed ID: 15876621 [TBL] [Abstract][Full Text] [Related]
11. Stimulation and Artifact-Suppression Techniques for In Vitro High-Density Microelectrode Array Systems. Shadmani A; Viswam V; Chen Y; Bounik R; Dragas J; Radivojevic M; Geissler S; Sitnikov S; Muller J; Hierlemann A IEEE Trans Biomed Eng; 2019 Sep; 66(9):2481-2490. PubMed ID: 30605090 [TBL] [Abstract][Full Text] [Related]
12. A switched-capacitor neural preamplifier with an adjustable pass-band for fast recovery following stimulation. Gusmeroli R; Bonfanti A; Borghi T; Spinelli AS; Baranauskas G Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():652-5. PubMed ID: 17946413 [TBL] [Abstract][Full Text] [Related]
13. A 64-channel ASIC for in-vitro simultaneous recording and stimulation of neurons using microelectrode arrays. Billoint O; Rostaing JP; Charvet G; Yvert B Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():6070-3. PubMed ID: 18003399 [TBL] [Abstract][Full Text] [Related]
14. New approaches to eliminating common-noise artifacts in recordings from intracortical microelectrode arrays: inter-electrode correlation and virtual referencing. Paralikar KJ; Rao CR; Clement RS J Neurosci Methods; 2009 Jun; 181(1):27-35. PubMed ID: 19394363 [TBL] [Abstract][Full Text] [Related]
16. A new method for spike extraction using velocity selective recording demonstrated with physiological ENG in Rat. Metcalfe BW; Chew DJ; Clarke CT; Donaldson Nde N; Taylor JT J Neurosci Methods; 2015 Aug; 251():47-55. PubMed ID: 25983203 [TBL] [Abstract][Full Text] [Related]
17. Electrical stimulus artifact cancellation and neural spike detection on large multi-electrode arrays. Mena GE; Grosberg LE; Madugula S; Hottowy P; Litke A; Cunningham J; Chichilnisky EJ; Paninski L PLoS Comput Biol; 2017 Nov; 13(11):e1005842. PubMed ID: 29131818 [TBL] [Abstract][Full Text] [Related]
18. A gated differential amplifier for recording physiological responses to electrical stimulation. Millard RE; McAnally KI; Clark GM J Neurosci Methods; 1992 Aug; 44(1):81-4. PubMed ID: 1434753 [TBL] [Abstract][Full Text] [Related]
19. Factors affecting the stimulus artifact tail in surface-recorded somatosensory-evoked potentials. Hua Y; Lovely DF; Doraiswami R Med Biol Eng Comput; 2006 Mar; 44(3):226-41. PubMed ID: 16937164 [TBL] [Abstract][Full Text] [Related]
20. Spike sorting in the presence of stimulation artifacts: a dynamical control systems approach. Shokri M; Gogliettino AR; Hottowy P; Sher A; Litke AM; Chichilnisky EJ; Pequito S; Muratore D J Neural Eng; 2024 Feb; 21(1):. PubMed ID: 38271715 [No Abstract] [Full Text] [Related] [Next] [New Search]