These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 2970977)

  • 1. Recovery of muscle from tetrodotoxin-induced disuse and the influence of daily exercise. 2. Muscle enzymes and fatigue characteristics.
    St-Pierre DM; Léonard D; Houle R; Gardiner PF
    Exp Neurol; 1988 Sep; 101(3):327-46. PubMed ID: 2970977
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recovery of muscle from tetrodotoxin-induced disuse and the influence of daily exercise. 1. Contractile properties.
    St-Pierre DM; Leonard D; Gardiner PF
    Exp Neurol; 1987 Dec; 98(3):472-88. PubMed ID: 3678426
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of tetrodotoxin-induced muscle paralysis on the physiological properties of muscle units and their innervating motoneurons in rat.
    Gardiner PF; Seburn KL
    J Physiol; 1997 Feb; 499 ( Pt 1)(Pt 1):207-16. PubMed ID: 9061650
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of tetrodotoxin-induced neural inactivation on single muscle fiber metabolic enzymes.
    Michel RN; Cowper G; Chi MM; Manchester JK; Falter H; Lowry OH
    Am J Physiol; 1994 Jul; 267(1 Pt 1):C55-66. PubMed ID: 8048492
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzyme levels in pools of microdissected human muscle fibres of identified type. Adaptive response to exercise.
    Essén-Gustavsson B; Henriksson J
    Acta Physiol Scand; 1984 Apr; 120(4):505-15. PubMed ID: 6237550
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TTX-induced muscle disuse alters Ca2+ activation characteristics of myofibril ATPase.
    Turcotte R; Panenic R; Gardiner PF
    Comp Biochem Physiol A Comp Physiol; 1991; 100(1):183-6. PubMed ID: 1682095
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of "disuse" on mammalian fast-twitch muscle: joint fixation compared with neurally applied tetrodotoxin.
    St-Pierre D; Gardiner PF
    Exp Neurol; 1985 Dec; 90(3):635-51. PubMed ID: 4065279
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Absence of staircase following disuse in rat gastrocnemius muscle.
    MacIntosh BR; Roberge MC; Gardiner PF
    Can J Physiol Pharmacol; 1988 Jun; 66(6):707-13. PubMed ID: 3167685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of tetrodotoxin-induced disuse on properties of developing rat gastrocnemius muscle.
    Lapointe MA; Gardiner PF
    Can J Physiol Pharmacol; 1984 Sep; 62(9):1106-11. PubMed ID: 6498622
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic profiles of cat and rat pharyngeal and diaphragm muscles.
    van Lunteren E; Brass EP
    Respir Physiol; 1996 Sep; 105(3):171-7. PubMed ID: 8931176
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptations in metabolic capacity of rat soleus after paralysis.
    Otis JS; Roy RR; Edgerton VR; Talmadge RJ
    J Appl Physiol (1985); 2004 Feb; 96(2):584-96. PubMed ID: 14565962
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Local and systemic effects of tetrodotoxin on the formation and elimination of synapses in reinnervated adult rat muscle.
    Taxt T
    J Physiol; 1983 Jul; 340():175-94. PubMed ID: 6887046
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of exercise on glycolytic enzymes of Zucker fatty rats.
    Hanissian SH; Tejwani GA; Mahle CD; Merola JA
    Mol Cell Biochem; 1988 Jun; 81(2):177-86. PubMed ID: 2971874
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptations of diaphragm and medial gastrocnemius muscles to inactivity.
    Zhan WZ; Sieck GC
    J Appl Physiol (1985); 1992 Apr; 72(4):1445-53. PubMed ID: 1592737
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of physical training on skeletal muscle in patients with chronic heart failure.
    Kiilavuori K; Näveri H; Salmi T; Härkönen M
    Eur J Heart Fail; 2000 Mar; 2(1):53-63. PubMed ID: 10742704
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Different metabolic adaptation of heart and skeletal muscles to moderate-intensity treadmill training in the rat.
    Zonderland ML; Bär PR; Reijneveld JC; Spruijt BM; Keizer HA; Glatz JF
    Eur J Appl Physiol Occup Physiol; 1999 Apr; 79(5):391-6. PubMed ID: 10208246
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activities of rat muscle enzymes after acute exercise.
    Boström S; Fahlén M; Hjalmarson A; Johansson R
    Acta Physiol Scand; 1974 Mar; 90(3):544-54. PubMed ID: 4364450
    [No Abstract]   [Full Text] [Related]  

  • 18. Manipulating training intensity and volume in already well-trained rats: effect on skeletal muscle oxidative and glycolytic enzymes and buffering capacity.
    Laursen PB; Marsh SA; Jenkins DG; Coombes JS
    Appl Physiol Nutr Metab; 2007 Jun; 32(3):434-42. PubMed ID: 17510678
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The activities of phosphorylase, hexokinase, phosphofructokinase, lactate dehydrogenase and the glycerol 3-phosphate dehydrogenases in muscles from vertebrates and invertebrates.
    Crabtree B; Newsholme EA
    Biochem J; 1972 Jan; 126(1):49-58. PubMed ID: 4342385
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tetrodotoxin blocks mechanical response in mammalian muscle in the presence of tetrodotoxin-resistant action potentials.
    Muchnik S; Kotsias BA
    Acta Physiol Lat Am; 1978; 28(2-3):115-20. PubMed ID: 555828
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.