These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Pt-Covered Multiwall Carbon Nanotubes for Oxygen Reduction in Fuel Cell Applications. Kim J; Lee SW; Carlton C; Shao-Horn Y J Phys Chem Lett; 2011 Jun; 2(11):1332-6. PubMed ID: 26295431 [TBL] [Abstract][Full Text] [Related]
24. Facial synthesis of PtM (M = Fe, Co, Cu, Ni) bimetallic alloy nanosponges and their enhanced catalysis for oxygen reduction reaction. Zhu Z; Zhai Y; Dong S ACS Appl Mater Interfaces; 2014 Oct; 6(19):16721-6. PubMed ID: 25223424 [TBL] [Abstract][Full Text] [Related]
25. Well-Coupled Nanohybrids Obtained by Component-Controlled Synthesis and in Situ Integration of Mn Lu Y; Zhao S; Yang R; Xu D; Yang J; Lin Y; Shi NE; Dai Z; Bao J; Han M ACS Appl Mater Interfaces; 2018 Mar; 10(9):8155-8164. PubMed ID: 29384648 [TBL] [Abstract][Full Text] [Related]
26. Tuning Nanowires and Nanotubes for Efficient Fuel-Cell Electrocatalysis. Wang W; Lv F; Lei B; Wan S; Luo M; Guo S Adv Mater; 2016 Dec; 28(46):10117-10141. PubMed ID: 27690335 [TBL] [Abstract][Full Text] [Related]
27. Colloidal synthesis of monodisperse trimetallic Pt-Fe-Ni nanocrystals and their enhanced electrochemical performances. Li C; Pan J; Zhang L; Fang J Nanotechnology; 2022 Dec; 34(7):. PubMed ID: 36384027 [TBL] [Abstract][Full Text] [Related]
28. One-pot aqueous fabrication of reduced graphene oxide supported porous PtAg alloy nanoflowers to greatly boost catalytic performances for oxygen reduction and hydrogen evolution. Liu Q; He YM; Weng X; Wang AJ; Yuan PX; Fang KM; Feng JJ J Colloid Interface Sci; 2018 Mar; 513():455-463. PubMed ID: 29175739 [TBL] [Abstract][Full Text] [Related]
30. Enhanced Electrocatalytic Activity and Stability toward the Oxygen Reduction Reaction with Unprotected Pt Nanoclusters. Liu J; Yin J; Feng B; Xu T; Wang F Nanomaterials (Basel); 2018 Nov; 8(11):. PubMed ID: 30463295 [TBL] [Abstract][Full Text] [Related]
31. Porous single-crystalline AuPt@Pt bimetallic nanocrystals with high mass electrocatalytic activities. Zhang L; Yu S; Zhang J; Gong J Chem Sci; 2016 Jun; 7(6):3500-3505. PubMed ID: 29997842 [TBL] [Abstract][Full Text] [Related]
32. Component-controlled synthesis and assembly of Cu-Pd nanocrystals on graphene for oxygen reduction reaction. Zheng Y; Zhao S; Liu S; Yin H; Chen YY; Bao J; Han M; Dai Z ACS Appl Mater Interfaces; 2015 Mar; 7(9):5347-57. PubMed ID: 25695756 [TBL] [Abstract][Full Text] [Related]
33. One-pot synthesis of Pt-Co alloy nanowire assemblies with tunable composition and enhanced electrocatalytic properties. Xia BY; Wu HB; Li N; Yan Y; Lou XW; Wang X Angew Chem Int Ed Engl; 2015 Mar; 54(12):3797-801. PubMed ID: 25630856 [TBL] [Abstract][Full Text] [Related]
34. Advanced catalytic performance of Au-Pt double-walled nanotubes and their fabrication through galvanic replacement reaction. Chen L; Kuai L; Yu X; Li W; Geng B Chemistry; 2013 Aug; 19(35):11753-8. PubMed ID: 23852858 [TBL] [Abstract][Full Text] [Related]
35. Simple one-pot synthesis of solid-core@porous-shell alloyed PtAg nanocrystals for the superior catalytic activity toward hydrogen evolution and glycerol oxidation. Weng X; Liu Q; Wang AJ; Yuan J; Feng JJ J Colloid Interface Sci; 2017 May; 494():15-21. PubMed ID: 28131029 [TBL] [Abstract][Full Text] [Related]
36. Scalable Preparation of the Chemically Ordered Pt-Fe-Au Nanocatalysts with High Catalytic Reactivity and Stability for Oxygen Reduction Reactions. Zhu H; Cai Y; Wang F; Gao P; Cao J ACS Appl Mater Interfaces; 2018 Jul; 10(26):22156-22166. PubMed ID: 29882641 [TBL] [Abstract][Full Text] [Related]
37. Simple fabrication of bimetallic platinum-rhodium alloyed nano-multipods: A highly effective and recyclable catalyst for reduction of 4-nitrophenol and rhodamine B. Yan Q; Wang XY; Feng JJ; Mei LP; Wang AJ J Colloid Interface Sci; 2021 Jan; 582(Pt B):701-710. PubMed ID: 32911415 [TBL] [Abstract][Full Text] [Related]
38. Composition-controlled PtCo alloy nanocubes with tuned electrocatalytic activity for oxygen reduction. Choi SI; Lee SU; Kim WY; Choi R; Hong K; Nam KM; Han SW; Park JT ACS Appl Mater Interfaces; 2012 Nov; 4(11):6228-34. PubMed ID: 23106417 [TBL] [Abstract][Full Text] [Related]
39. Facile synthesis of three-dimensional Pt-Pd alloyed multipods with enhanced electrocatalytic activity and stability for ethylene glycol oxidation. Lv JJ; Mei LP; Weng X; Wang AJ; Chen LL; Liu XF; Feng JJ Nanoscale; 2015 Mar; 7(13):5699-705. PubMed ID: 25743425 [TBL] [Abstract][Full Text] [Related]
40. Ternary PtZrNi nanorods for efficient multifunctional electrocatalysis towards oxygen reduction and alcohol oxidation. Zeng S; Zhang J; Wang H; Zhang X; Hou H; Bai Y; Zhang G J Colloid Interface Sci; 2023 May; 638():901-907. PubMed ID: 36737350 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]