These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 29709818)

  • 1. Comparative Life Cycle Assessment of possible methods for the treatment of contaminated soil at an environmentally degraded site.
    Mauko Pranjić A; Oprčkal P; Mladenovič A; Zapušek P; Urleb M; Turk J
    J Environ Manage; 2018 Jul; 218():497-508. PubMed ID: 29709818
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Life cycle assessment of disposal of residues from municipal solid waste incineration: recycling of bottom ash in road construction or landfilling in Denmark evaluated in the ROAD-RES model.
    Birgisdóttir H; Bhander G; Hauschild MZ; Christensen TH
    Waste Manag; 2007; 27(8):S75-84. PubMed ID: 17416511
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Is phytoremediation without biomass valorization sustainable? - comparative LCA of landfilling vs. anaerobic co-digestion.
    Vigil M; Marey-Pérez MF; Martinez Huerta G; Álvarez Cabal V
    Sci Total Environ; 2015 Feb; 505():844-50. PubMed ID: 25461087
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biochar produced from wood waste for soil remediation in Sweden: Carbon sequestration and other environmental impacts.
    Papageorgiou A; Azzi ES; Enell A; Sundberg C
    Sci Total Environ; 2021 Jul; 776():145953. PubMed ID: 33636507
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Critical review of decision support tools for sustainability assessment of site remediation options.
    Huysegoms L; Cappuyns V
    J Environ Manage; 2017 Jul; 196():278-296. PubMed ID: 28288362
    [TBL] [Abstract][Full Text] [Related]  

  • 6. LCA of management strategies for RDF incineration and gasification bottom ash based on experimental leaching data.
    Di Gianfilippo M; Costa G; Pantini S; Allegrini E; Lombardi F; Astrup TF
    Waste Manag; 2016 Jan; 47(Pt B):285-98. PubMed ID: 26095983
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using multiple indices to evaluate scenarios for the remediation of contaminated land: the Porto Marghera (Venice, Italy) contaminated site.
    Critto A; Agostini P
    Environ Sci Pollut Res Int; 2009 Sep; 16(6):649-62. PubMed ID: 19572157
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sustainability likelihood of remediation options for metal-contaminated soil/sediment.
    Chen SS; Taylor JS; Baek K; Khan E; Tsang DCW; Ok YS
    Chemosphere; 2017 May; 174():421-427. PubMed ID: 28187388
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sustainability assessment of electrokinetic bioremediation compared with alternative remediation options for a petroleum release site.
    Gill RT; Thornton SF; Harbottle MJ; Smith JW
    J Environ Manage; 2016 Dec; 184(Pt 1):120-131. PubMed ID: 27511828
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessing the environmental sustainability of energy recovery from municipal solid waste in the UK.
    Jeswani HK; Azapagic A
    Waste Manag; 2016 Apr; 50():346-63. PubMed ID: 26906085
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Environmental and socio-economic sustainability appraisal of contaminated land remediation strategies: A case study at a mega-site in China.
    Song Y; Hou D; Zhang J; O'Connor D; Li G; Gu Q; Li S; Liu P
    Sci Total Environ; 2018 Jan; 610-611():391-401. PubMed ID: 28806555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A perspective on LCA application in site remediation services: critical review of challenges.
    Morais SA; Delerue-Matos C
    J Hazard Mater; 2010 Mar; 175(1-3):12-22. PubMed ID: 19910112
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human health risk assessment in restoring safe and productive use of abandoned contaminated sites.
    Wcisło E; Bronder J; Bubak A; Rodríguez-Valdés E; Gallego JLR
    Environ Int; 2016 Sep; 94():436-448. PubMed ID: 27344373
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selection of green remediation alternatives for chemical industrial sites: An integrated life cycle assessment and fuzzy synthetic evaluation approach.
    Hu G; Liu H; Chen C; He P; Li J; Hou H
    Sci Total Environ; 2022 Nov; 845():157211. PubMed ID: 35809737
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Remediation status and practices for contaminated sites in China: survey-based analysis.
    Ma Y; Dong B; Bai Y; Zhang M; Xie Y; Shi Y; Du X
    Environ Sci Pollut Res Int; 2018 Nov; 25(33):33216-33224. PubMed ID: 30255269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Remediation of multiple heavy metal-contaminated soil through the combination of soil washing and in situ immobilization.
    Zhai X; Li Z; Huang B; Luo N; Huang M; Zhang Q; Zeng G
    Sci Total Environ; 2018 Sep; 635():92-99. PubMed ID: 29660731
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Risk-based economic decision analysis of remediation options at a PCE-contaminated site.
    Lemming G; Friis-Hansen P; Bjerg PL
    J Environ Manage; 2010 May; 91(5):1169-82. PubMed ID: 20117877
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Avian Conservation Areas as a Proxy for Contaminated Soil Remediation.
    Lin WC; Lin YP; Anthony J; Ding TS
    Int J Environ Res Public Health; 2015 Jul; 12(7):8312-31. PubMed ID: 26193297
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Life cycle assessments of municipal solid waste management systems: a comparative analysis of selected peer-reviewed literature.
    Cleary J
    Environ Int; 2009 Nov; 35(8):1256-66. PubMed ID: 19682746
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two-scale evaluation of remediation technologies for a contaminated site by applying economic input-output life cycle assessment: risk-cost, risk-energy consumption and risk-CO2 emission.
    Inoue Y; Katayama A
    J Hazard Mater; 2011 Sep; 192(3):1234-42. PubMed ID: 21741766
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.