BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 29709896)

  • 1. Ureolytic Prokaryotes in Soil: Community Abundance and Diversity.
    Oshiki M; Araki M; Hirakata Y; Hatamoto M; Yamaguchi T; Araki N
    Microbes Environ; 2018 Jul; 33(2):230-233. PubMed ID: 29709896
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-term urea fertilization alters the composition and increases the abundance of soil ureolytic bacterial communities in an upland soil.
    Sun R; Li W; Hu C; Liu B
    FEMS Microbiol Ecol; 2019 May; 95(5):. PubMed ID: 30947327
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessing ureolytic bacteria with calcifying abilities isolated from limestone caves for biocalcification.
    Omoregie AI; Ong DEL; Nissom PM
    Lett Appl Microbiol; 2019 Feb; 68(2):173-181. PubMed ID: 30537001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Urease gene-containing Archaea dominate autotrophic ammonia oxidation in two acid soils.
    Lu L; Jia Z
    Environ Microbiol; 2013 Jun; 15(6):1795-809. PubMed ID: 23298189
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phylogenetically diverse ureC genes and their expression suggest the urea utilization by bacterial symbionts in marine sponge Xestospongia testudinaria.
    Su J; Jin L; Jiang Q; Sun W; Zhang F; Li Z
    PLoS One; 2013; 8(5):e64848. PubMed ID: 23741404
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Soil Aggregate Stratification of Ureolytic Microbiota Affects Urease Activity in an Inceptisol.
    Wang L; Luo X; Xiong X; Chen W; Hao X; Huang Q
    J Agric Food Chem; 2019 Oct; 67(42):11584-11590. PubMed ID: 31566380
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Short-Term Nitrogen Fertilization Affects Microbial Community Composition and Nitrogen Mineralization Functions in an Agricultural Soil.
    Ouyang Y; Norton JM
    Appl Environ Microbiol; 2020 Feb; 86(5):. PubMed ID: 31836579
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differences in Ureolytic Bacterial Composition between the Rumen Digesta and Rumen Wall Based on
    Jin D; Zhao S; Zheng N; Bu D; Beckers Y; Denman SE; McSweeney CS; Wang J
    Front Microbiol; 2017; 8():385. PubMed ID: 28326079
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional gene-guided enrichment plus in situ microsphere cultivation enables isolation of new crucial ureolytic bacteria from the rumen of cattle.
    Liu S; Yu Z; Zhong H; Zheng N; Huws S; Wang J; Zhao S
    Microbiome; 2023 Apr; 11(1):76. PubMed ID: 37060083
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of land use on bacterial and archaeal diversity and community structures in three natural ecosystems and one agricultural soil.
    Lynn TM; Liu Q; Hu Y; Yuan H; Wu X; Khai AA; Wu J; Ge T
    Arch Microbiol; 2017 Jul; 199(5):711-721. PubMed ID: 28233042
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Analysis of soil bacterial diversity by using the 16S rRNA gene library].
    Liu W; Mao Z; Yang Y; Xie B
    Wei Sheng Wu Xue Bao; 2008 Oct; 48(10):1344-50. PubMed ID: 19160815
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Illumina-based analysis of bacterial diversity related to halophytes Salicornia europaea and Sueada aralocaspica.
    Shi YW; Lou K; Li C; Wang L; Zhao ZY; Zhao S; Tian CY
    J Microbiol; 2015 Oct; 53(10):678-85. PubMed ID: 26428918
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Presence of diverse Candidatus Methylomirabilis oxyfera-like bacteria of NC10 phylum in agricultural soils.
    Shen LD; Wu HS; Gao ZQ; Li J; Liu X
    J Appl Microbiol; 2016 Jun; 120(6):1552-60. PubMed ID: 26932395
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring the Abundance and Diversity of Bacterial Communities and Quantifying Antibiotic-Related Genes Along an Elevational Gradient in Taibai Mountain, China.
    Peng C; Wang H; Jiang Y; Yang J; Lai H; Wei X
    Microb Ecol; 2018 Nov; 76(4):1053-1062. PubMed ID: 29744532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of Cropping Systems, Soil Inoculum, and Plant Species Identity on Soil Bacterial Community Structure.
    Ishaq SL; Johnson SP; Miller ZJ; Lehnhoff EA; Olivo S; Yeoman CJ; Menalled FD
    Microb Ecol; 2017 Feb; 73(2):417-434. PubMed ID: 27677892
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Research on soil bacteria under the impact of sealed CO2 leakage by high-throughput sequencing technology].
    Tian D; Ma X; Li YE; Zha LS; Wu Y; Zou XX; Liu S
    Huan Jing Ke Xue; 2013 Oct; 34(10):4096-104. PubMed ID: 24364336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of Soil Bacterial Communities in Volcanic Ash Microcosms in a Range of Climates.
    Kerfahi D; Tateno R; Takahashi K; Cho H; Kim H; Adams JM
    Microb Ecol; 2017 May; 73(4):775-790. PubMed ID: 27734114
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reducing microbial ureolytic activity in the rumen by immunization against urease therein.
    Zhao S; Wang J; Zheng N; Bu D; Sun P; Yu Z
    BMC Vet Res; 2015 Apr; 11():94. PubMed ID: 25889568
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbial Signatures of Cadaver Gravesoil During Decomposition.
    Finley SJ; Pechal JL; Benbow ME; Robertson BK; Javan GT
    Microb Ecol; 2016 Apr; 71(3):524-9. PubMed ID: 26748499
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extensive Overlap of Tropical Rainforest Bacterial Endophytes between Soil, Plant Parts, and Plant Species.
    Haruna E; Zin NM; Kerfahi D; Adams JM
    Microb Ecol; 2018 Jan; 75(1):88-103. PubMed ID: 28642991
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.