BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 29710037)

  • 1. Organ Co-Relationship in Tryptophan Metabolism and Factors That Govern the Biosynthesis of Nicotinamide from Tryptophan.
    Shibata K
    J Nutr Sci Vitaminol (Tokyo); 2018; 64(2):90-98. PubMed ID: 29710037
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The niacin required for optimum growth can be synthesized from L-tryptophan in growing mice lacking tryptophan-2,3-dioxygenase.
    Terakata M; Fukuwatari T; Kadota E; Sano M; Kanai M; Nakamura T; Funakoshi H; Shibata K
    J Nutr; 2013 Jul; 143(7):1046-51. PubMed ID: 23700344
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Organ Correlation with Tryptophan Metabolism Obtained by Analyses of TDO-KO and QPRT-KO Mice.
    Shibata K; Fukuwatari T
    Int J Tryptophan Res; 2016; 9():1-7. PubMed ID: 27147825
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large amounts of picolinic acid are lethal but small amounts increase the conversion of tryptophan-nicotinamide in rats.
    Shibata K; Fukuwatari T
    J Nutr Sci Vitaminol (Tokyo); 2014; 60(5):334-9. PubMed ID: 25744422
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of nicotinamide administration on the tryptophan-nicotinamide pathway in humans.
    Fukuwatari T; Shibata K
    Int J Vitam Nutr Res; 2007 Jul; 77(4):255-62. PubMed ID: 18271280
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vitamin B1 deficiency inhibits the increased conversion of tryptophan to nicotinamide in severe food-restricted rats.
    Shibata K; Kobayashi R; Fukuwatari T
    Biosci Biotechnol Biochem; 2015; 79(1):103-8. PubMed ID: 25253514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contributions of tryptophan 2,3-dioxygenase and indoleamine 2,3-dioxygenase to the conversion of D-tryptophan to nicotinamide analyzed by using tryptophan 2,3-dioxygenase-knockout mice.
    Maeta A; Sano M; Fukuwatari T; Funakoshi H; Nakamura T; Shibata K
    Biosci Biotechnol Biochem; 2014; 78(5):878-81. PubMed ID: 25035993
    [TBL] [Abstract][Full Text] [Related]  

  • 8. True Niacin Deficiency in Quinolinic Acid Phosphoribosyltransferase (QPRT) Knockout Mice.
    Shibata K
    J Nutr Sci Vitaminol (Tokyo); 2015; 61 Suppl():S145-7. PubMed ID: 26598832
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The kynurenine pathway activities in a sub-Saharan HIV/AIDS population.
    Bipath P; Levay PF; Viljoen M
    BMC Infect Dis; 2015 Aug; 15():346. PubMed ID: 26285873
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The immune effects of TRYCATs (tryptophan catabolites along the IDO pathway): relevance for depression - and other conditions characterized by tryptophan depletion induced by inflammation.
    Maes M; Mihaylova I; Ruyter MD; Kubera M; Bosmans E
    Neuro Endocrinol Lett; 2007 Dec; 28(6):826-31. PubMed ID: 18063923
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of vitamin B6 deficiency on the conversion ratio of tryptophan to niacin.
    Shibata K; Mushiage M; Kondo T; Hayakawa T; Tsuge H
    Biosci Biotechnol Biochem; 1995 Nov; 59(11):2060-3. PubMed ID: 8541642
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increased conversion of tryptophan to nicotinamide in rats by dietary valproate.
    Shibata K; Kondo R; Sano M; Fukuwatari T
    Biosci Biotechnol Biochem; 2013; 77(2):295-300. PubMed ID: 23391917
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of adenine-induced renal failure on tryptophan-niacin metabolism in rats.
    Fukuwatari T; Morikawa Y; Hayakawa F; Sugimoto E; Shibata K
    Biosci Biotechnol Biochem; 2001 Oct; 65(10):2154-61. PubMed ID: 11758903
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3-Hydroxyanthranilic acid accumulation following administration of the 3-hydroxyanthranilic acid 3,4-dioxygenase inhibitor NCR-631.
    Fornstedt-Wallin B; Lundström J; Fredriksson G; Schwarcz R; Luthman J
    Eur J Pharmacol; 1999 Dec; 386(1):15-24. PubMed ID: 10611459
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression of tryptophan 2,3-dioxygenase and production of kynurenine pathway metabolites in triple transgenic mice and human Alzheimer's disease brain.
    Wu W; Nicolazzo JA; Wen L; Chung R; Stankovic R; Bao SS; Lim CK; Brew BJ; Cullen KM; Guillemin GJ
    PLoS One; 2013; 8(4):e59749. PubMed ID: 23630570
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Involvement of the kynurenine pathway in human glioma pathophysiology.
    Adams S; Teo C; McDonald KL; Zinger A; Bustamante S; Lim CK; Sundaram G; Braidy N; Brew BJ; Guillemin GJ
    PLoS One; 2014; 9(11):e112945. PubMed ID: 25415278
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in kynurenine pathway metabolism in the brain, liver and kidney of aged female Wistar rats.
    Braidy N; Guillemin GJ; Mansour H; Chan-Ling T; Grant R
    FEBS J; 2011 Nov; 278(22):4425-34. PubMed ID: 22032336
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Establishment of true niacin deficiency in quinolinic acid phosphoribosyltransferase knockout mice.
    Terakata M; Fukuwatari T; Sano M; Nakao N; Sasaki R; Fukuoka S; Shibata K
    J Nutr; 2012 Dec; 142(12):2148-53. PubMed ID: 23096007
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enzymes that control the conversion of L-tryptophan-nicotinamide and the urinary excretion ratio (N(1)-methyl-2-pyridone-5-carboxamide + N(1)-methyl-4-pyridone-3-carboxamide)/N(1)-methylnicotinamide in mice.
    Shibata K; Morita N; Shibata Y; Fukuwatari T
    Biosci Biotechnol Biochem; 2013; 77(10):2105-11. PubMed ID: 24096677
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of mitochondria and o-methoxybenzoylalanine on 3-hydroxyanthranilic acid dioxygenase activity and quinolinic acid synthesis.
    Chiarugi A; Moroni F
    J Neurochem; 1999 Mar; 72(3):1125-32. PubMed ID: 10037484
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.