These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

407 related articles for article (PubMed ID: 29710584)

  • 21. Evaluation of the potential of indigenous calcareous shale for neutralization and removal of arsenic and heavy metals from acid mine drainage in the Taxco mining area, Mexico.
    Romero FM; Núñez L; Gutiérrez ME; Armienta MA; Ceniceros-Gómez AE
    Arch Environ Contam Toxicol; 2011 Feb; 60(2):191-203. PubMed ID: 20523977
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sequential hydrotalcite precipitation and biological sulfate reduction for acid mine drainage treatment.
    Yan S; Cheng KY; Morris C; Douglas G; Ginige MP; Zheng G; Zhou L; Kaksonen AH
    Chemosphere; 2020 Aug; 252():126570. PubMed ID: 32443266
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Passive bioremediation technology incorporating lignocellulosic spent mushroom compost and limestone for metal- and sulfate-rich acid mine drainage.
    Muhammad SN; Kusin FM; Md Zahar MS; Mohamat Yusuff F; Halimoon N
    Environ Technol; 2017 Aug; 38(16):2003-2012. PubMed ID: 27745113
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Heavy metal ions removed from imitating acid mine drainages with a thermoacidophilic archaea: Acidianus manzaensis YN25.
    Li M; Huang Y; Yang Y; Wang H; Hu L; Zhong H; He Z
    Ecotoxicol Environ Saf; 2020 Mar; 190():110084. PubMed ID: 31869713
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chitin as a substrate for the biostimulation of sulfate-reducing bacteria in the treatment of mine-impacted water (MIW).
    Rodrigues C; Núñez-Gómez D; Silveira DD; Lapolli FR; Lobo-Recio MA
    J Hazard Mater; 2019 Aug; 375():330-338. PubMed ID: 30826155
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Removal of sulfate and heavy metals by sulfate-reducing bacteria in an expanded granular sludge bed reactor.
    Liu Z; Li L; Li Z; Tian X
    Environ Technol; 2018 Jul; 39(14):1814-1822. PubMed ID: 28592226
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Semi-passive in-situ pilot scale bioreactor successfully removed sulfate and metals from mine impacted water under subarctic climatic conditions.
    Nielsen G; Hatam I; Abuan KA; Janin A; Coudert L; Blais JF; Mercier G; Baldwin SA
    Water Res; 2018 Sep; 140():268-279. PubMed ID: 29723816
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Haneş and Valea Vinului (Romania) closed mines Acid Mine Drainages (AMDs)--actual condition and passive treatment remediation proposal.
    Măicăneanu A; Bedelean H; Ardelean M; Burcă S; Stanca M
    Chemosphere; 2013 Oct; 93(7):1400-5. PubMed ID: 23899925
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nickel, manganese and copper removal by a mixed consortium of sulfate reducing bacteria at a high COD/sulfate ratio.
    Barbosa LP; Costa PF; Bertolino SM; Silva JC; Guerra-Sá R; Leão VA; Teixeira MC
    World J Microbiol Biotechnol; 2014 Aug; 30(8):2171-80. PubMed ID: 24710619
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Treatment of acid mine drainage by sulfate reducing bacteria with iron in bench scale runs.
    Bai H; Kang Y; Quan H; Han Y; Sun J; Feng Y
    Bioresour Technol; 2013 Jan; 128():818-22. PubMed ID: 23182037
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Passive treatment of acid mine drainage in bioreactors using sulfate-reducing bacteria: critical review and research needs.
    Neculita CM; Zagury GJ; Bussière B
    J Environ Qual; 2007; 36(1):1-16. PubMed ID: 17215207
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inhibition of Sulfate Reduction and Cell Division by Desulfovibrio desulfuricans Coated in Palladium Metal.
    Barnes RJ; Voegtlin SP; Naik SR; Gomes R; Hubert CRJ; Larter SR; Bryant SL
    Appl Environ Microbiol; 2022 Jun; 88(12):e0058022. PubMed ID: 35638843
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization and reactivity assessment of organic substrates for sulphate-reducing bacteria in acid mine drainage treatment.
    Zagury GJ; Kulnieks VI; Neculita CM
    Chemosphere; 2006 Aug; 64(6):944-54. PubMed ID: 16487566
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Removal of sulfate and heavy metals by sulfate reducing bacteria in short-term bench scale upflow anaerobic packed bed reactor runs.
    Jong T; Parry DL
    Water Res; 2003 Aug; 37(14):3379-89. PubMed ID: 12834731
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biotreatment and bioassessment of heavy metal removal by sulphate reducing bacteria in fixed bed reactors.
    Cruz Viggi C; Pagnanelli F; Cibati A; Uccelletti D; Palleschi C; Toro L
    Water Res; 2010 Jan; 44(1):151-8. PubMed ID: 19804893
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Heavy metal removal from aqueous solution using sodium alginate immobilized sulfate reducing bacteria: Mechanism and process optimization.
    Gopi Kiran M; Pakshirajan K; Das G
    J Environ Manage; 2018 Jul; 218():486-496. PubMed ID: 29709817
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Promotion of Ni2+ removal by masking toxicity to sulfate-reducing bacteria: addition of citrate.
    Qian J; Zhu X; Tao Y; Zhou Y; He X; Li D
    Int J Mol Sci; 2015 Apr; 16(4):7932-43. PubMed ID: 25860948
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhanced efficiencies on purifying acid mine drainage in constructed wetlands based on synergistic adsorption of attapulgite-soda residue composites and microbial sulfate reduction.
    Chen H; Jia Y; Li J; Ai Y; Zhang W; Han L; Chen M
    J Hazard Mater; 2024 May; 470():134221. PubMed ID: 38615651
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ferrous sulfide nanoparticles can be biosynthesized by sulfate-reducing bacteria: Synthesis, characterization and removal of heavy metals from acid mine drainage.
    Chen J; Gan L; Han Y; Owens G; Chen Z
    J Hazard Mater; 2024 Mar; 466():133622. PubMed ID: 38280317
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Precipitation of Zn(II), Cu(II) and Pb(II) at bench-scale using biogenic hydrogen sulfide from the utilization of volatile fatty acids.
    Alvarez MT; Crespo C; Mattiasson B
    Chemosphere; 2007 Jan; 66(9):1677-83. PubMed ID: 16979215
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.