These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 29710596)

  • 1. Mixtures of macrophyte growth forms promote nitrogen cycling in wetlands.
    Choudhury MI; McKie BG; Hallin S; Ecke F
    Sci Total Environ; 2018 Sep; 635():1436-1443. PubMed ID: 29710596
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plant diversity increases N removal in constructed wetlands when multiple rather than single N processes are considered.
    Geng Y; Ge Y; Luo B; Chen Z; Min Y; Schmid B; Gu B; Chang J
    Ecol Appl; 2019 Oct; 29(7):e01965. PubMed ID: 31243824
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Purification Effect of Submerged Macrophyte System with Different Plants Combinations and C/N Ratios].
    Liu M; Chen KN
    Huan Jing Ke Xue; 2018 Jun; 39(6):2706-2714. PubMed ID: 29965626
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relative importance of plant uptake and plant associated denitrification for removal of nitrogen from mine drainage in sub-arctic wetlands.
    Hallin S; Hellman M; Choudhury MI; Ecke F
    Water Res; 2015 Nov; 85():377-83. PubMed ID: 26360231
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitrogen loading affects microbes, nitrifiers and denitrifiers attached to submerged macrophyte in constructed wetlands.
    Yan L; Zhang S; Lin D; Guo C; Yan L; Wang S; He Z
    Sci Total Environ; 2018 May; 622-623():121-126. PubMed ID: 29212050
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Submerged freshwater plant communities do not show species complementarity effect in wetland mesocosms.
    Riis T; Olesen A; Jensen SM; Alnoee AB; Baattrup-Pedersen A; Lauridsen TL; Sorrell BK
    Biol Lett; 2018 Dec; 14(12):20180635. PubMed ID: 30958246
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Suitability of macrophytes for nutrient removal from surface flow constructed wetlands receiving secondary treated sewage effluent in Queensland, Australia.
    Greenway M
    Water Sci Technol; 2003; 48(2):121-8. PubMed ID: 14510202
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparison of nutrient uptake efficiency and growth rate between different macrophyte growth forms.
    Manolaki P; Mouridsen MB; Nielsen E; Olesen A; Jensen SM; Lauridsen TL; Baattrup-Pedersen A; Sorrell BK; Riis T
    J Environ Manage; 2020 Nov; 274():111181. PubMed ID: 32810679
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of macrophyte species richness on wetland ecosystem functioning and services.
    Engelhardt KA; Ritchie ME
    Nature; 2001 Jun; 411(6838):687-9. PubMed ID: 11395769
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plant diversity effect on water quality in wetlands: a meta-analysis based on experimental systems.
    Brisson J; Rodriguez M; Martin CA; Proulx R
    Ecol Appl; 2020 Jun; 30(4):e02074. PubMed ID: 31965659
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nitrogen transformations and retention in planted and artificially aerated constructed wetlands.
    Maltais-Landry G; Maranger R; Brisson J; Chazarenc F
    Water Res; 2009 Feb; 43(2):535-45. PubMed ID: 19036399
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of aquatic macrophyte community structure between natural wetlands and rice fields with different cultivation ages.
    Rolon AS; Godoy RS; Maltchik L
    Braz J Biol; 2018 May; 78(2):224-232. PubMed ID: 28977044
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Growth vitality and pollutants-removal ability of plants in constructed wetland in Beijing region].
    Wang QH; Duan LS; Wu JY; Yang J
    Ying Yong Sheng Tai Xue Bao; 2008 May; 19(5):1131-7. PubMed ID: 18655604
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Growth and contaminant removal effect of several plants in constructed wetlands.
    Cheng XY; Liang MQ; Chen WY; Liu XC; Chen ZH
    J Integr Plant Biol; 2009 Mar; 51(3):325-35. PubMed ID: 19261076
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differences in wetland nitrogen cycling between the invasive grass Microstegium vimineum and a diverse plant community.
    DeMeester JE; DeB Richter D
    Ecol Appl; 2010 Apr; 20(3):609-19. PubMed ID: 20437951
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Modeling nitrogen transformation in a novel circular-flow corridor wetland].
    Peng JF; Song YH; Yuan P; Zhang XY; Hu XM
    Huan Jing Ke Xue; 2014 Apr; 35(4):1311-7. PubMed ID: 24946581
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contribution of water hyacinth (Eichhornia crassipes (Mart.) Solms) grown under different nutrient conditions to Fe-removal mechanisms in constructed wetlands.
    Jayaweera MW; Kasturiarachchi JC; Kularatne RK; Wijeyekoon SL
    J Environ Manage; 2008 May; 87(3):450-60. PubMed ID: 17383797
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Planting richness affects the recovery of vegetation and soil processes in constructed wetlands following disturbance.
    Means MM; Ahn C; Noe GB
    Sci Total Environ; 2017 Feb; 579():1366-1378. PubMed ID: 27914638
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon storage potential by four macrophytes as affected by planting diversity in a created wetland.
    Means MM; Ahn C; Korol AR; Williams LD
    J Environ Manage; 2016 Jan; 165():133-139. PubMed ID: 26431640
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Algae mediate submerged macrophyte response to nutrient and dissolved inorganic carbon loading: a mesocosm study on different species.
    Xie D; Yu D; You WH; Wang LG
    Chemosphere; 2013 Oct; 93(7):1301-8. PubMed ID: 23958444
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.