BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 29710750)

  • 1. Multi-task fused sparse learning for mild cognitive impairment identification.
    Yang P; Ni D; Chen S; Wang T; Wu D; Lei B
    Technol Health Care; 2018; 26(S1):437-448. PubMed ID: 29710750
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correlation-Weighted Sparse Group Representation for Brain Network Construction in MCI Classification.
    Yu R; Zhang H; An L; Chen X; Wei Z; Shen D
    Med Image Comput Comput Assist Interv; 2016 Oct; 9900():37-45. PubMed ID: 28642938
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fused Sparse Network Learning for Longitudinal Analysis of Mild Cognitive Impairment.
    Yang P; Zhou F; Ni D; Xu Y; Chen S; Wang T; Lei B
    IEEE Trans Cybern; 2021 Jan; 51(1):233-246. PubMed ID: 31567112
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of advanced machine learning methods on resting-state fMRI network for identification of mild cognitive impairment and Alzheimer's disease.
    Khazaee A; Ebrahimzadeh A; Babajani-Feremi A
    Brain Imaging Behav; 2016 Sep; 10(3):799-817. PubMed ID: 26363784
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sparse temporally dynamic resting-state functional connectivity networks for early MCI identification.
    Wee CY; Yang S; Yap PT; Shen D;
    Brain Imaging Behav; 2016 Jun; 10(2):342-56. PubMed ID: 26123390
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Connectivity strength-weighted sparse group representation-based brain network construction for MCI classification.
    Yu R; Zhang H; An L; Chen X; Wei Z; Shen D
    Hum Brain Mapp; 2017 May; 38(5):2370-2383. PubMed ID: 28150897
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temporally Constrained Group Sparse Learning for Longitudinal Data Analysis in Alzheimer's Disease.
    Jie B; Liu M; Liu J; Zhang D; Shen D
    IEEE Trans Biomed Eng; 2017 Jan; 64(1):238-249. PubMed ID: 27093313
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hyper-connectivity of functional networks for brain disease diagnosis.
    Jie B; Wee CY; Shen D; Zhang D
    Med Image Anal; 2016 Aug; 32():84-100. PubMed ID: 27060621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Supervised Discriminative Group Sparse Representation for Mild Cognitive Impairment Diagnosis.
    Suk HI; Wee CY; Lee SW; Shen D
    Neuroinformatics; 2015 Jul; 13(3):277-95. PubMed ID: 25501275
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generalized fused group lasso regularized multi-task feature learning for predicting cognitive outcomes in Alzheimers disease.
    Cao P; Liu X; Liu H; Yang J; Zhao D; Huang M; Zaiane O
    Comput Methods Programs Biomed; 2018 Aug; 162():19-45. PubMed ID: 29903486
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel Effective Connectivity Inference Using Ultra-Group Constrained Orthogonal Forward Regression and Elastic Multilayer Perceptron Classifier for MCI Identification.
    Li Y; Yang H; Lei B; Liu J; Wee CY
    IEEE Trans Med Imaging; 2019 May; 38(5):1227-1239. PubMed ID: 30475714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimating functional brain networks by incorporating a modularity prior.
    Qiao L; Zhang H; Kim M; Teng S; Zhang L; Shen D
    Neuroimage; 2016 Nov; 141():399-407. PubMed ID: 27485752
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of progressive mild cognitive impairment patients using incomplete longitudinal MRI scans.
    Thung KH; Wee CY; Yap PT; Shen D
    Brain Struct Funct; 2016 Nov; 221(8):3979-3995. PubMed ID: 26603378
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sparse SPM: Group Sparse-dictionary learning in SPM framework for resting-state functional connectivity MRI analysis.
    Lee YB; Lee J; Tak S; Lee K; Na DL; Seo SW; Jeong Y; Ye JC;
    Neuroimage; 2016 Jan; 125():1032-1045. PubMed ID: 26524138
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancing the representation of functional connectivity networks by fusing multi-view information for autism spectrum disorder diagnosis.
    Huang H; Liu X; Jin Y; Lee SW; Wee CY; Shen D
    Hum Brain Mapp; 2019 Feb; 40(3):833-854. PubMed ID: 30357998
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative Assessment of Resting-State for Mild Cognitive Impairment Detection: A Functional Near-Infrared Spectroscopy and Deep Learning Approach.
    Yang D; Hong KS
    J Alzheimers Dis; 2021; 80(2):647-663. PubMed ID: 33579839
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Group-constrained sparse fMRI connectivity modeling for mild cognitive impairment identification.
    Wee CY; Yap PT; Zhang D; Wang L; Shen D
    Brain Struct Funct; 2014 Mar; 219(2):641-56. PubMed ID: 23468090
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integration of structural and functional magnetic resonance imaging improves mild cognitive impairment detection.
    Kim J; Lee JH
    Magn Reson Imaging; 2013 Jun; 31(5):718-32. PubMed ID: 23260395
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationship Induced Multi-Template Learning for Diagnosis of Alzheimer's Disease and Mild Cognitive Impairment.
    Liu M; Zhang D; Shen D
    IEEE Trans Med Imaging; 2016 Jun; 35(6):1463-74. PubMed ID: 26742127
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-negative discriminative brain functional connectivity for identifying schizophrenia on resting-state fMRI.
    Zhu Q; Huang J; Xu X
    Biomed Eng Online; 2018 Mar; 17(1):32. PubMed ID: 29534759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.