These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 29710799)

  • 41. Photoluminescence Response in Carbon Nanomaterials to Enzymatic Degradation.
    He X; White DL; Kapralov AA; Kagan VE; Star A
    Anal Chem; 2020 Oct; 92(19):12880-12890. PubMed ID: 32803946
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Encapsulation of Microorganisms, Enzymes, and Redox Mediators in Graphene Oxide and Reduced Graphene Oxide.
    Schlesinger O; Alfonta L
    Methods Enzymol; 2018; 609():197-219. PubMed ID: 30244790
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Elevated internalization and cytotoxicity of polydispersed single-walled carbon nanotubes in activated B cells can be basis for preferential depletion of activated B cells
    Dutt TS; Mia MB; Saxena RK
    Nanotoxicology; 2019 Aug; 13(6):849-860. PubMed ID: 31232140
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Minimizing oxidation and stable nanoscale dispersion improves the biocompatibility of graphene in the lung.
    Duch MC; Budinger GR; Liang YT; Soberanes S; Urich D; Chiarella SE; Campochiaro LA; Gonzalez A; Chandel NS; Hersam MC; Mutlu GM
    Nano Lett; 2011 Dec; 11(12):5201-7. PubMed ID: 22023654
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Heterojunction Solar Cells Based on Silicon and Composite Films of Graphene Oxide and Carbon Nanotubes.
    Yu L; Tune D; Shearer C; Shapter J
    ChemSusChem; 2015 Sep; 8(17):2940-7. PubMed ID: 25959241
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Graphene and carbon nanotubes activate different cell surface receptors on macrophages before and after deactivation of endotoxins.
    Lahiani MH; Gokulan K; Williams K; Khodakovskaya MV; Khare S
    J Appl Toxicol; 2017 Nov; 37(11):1305-1316. PubMed ID: 28485474
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Synergistic effect of carbon nanotubes and graphene for high performance cellulose acetate membranes in biomedical applications.
    Ioniță M; Crică LE; Voicu SI; Dinescu S; Miculescu F; Costache M; Iovu H
    Carbohydr Polym; 2018 Mar; 183():50-61. PubMed ID: 29352892
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Surface Oxidation of Graphene Oxide Determines Membrane Damage, Lipid Peroxidation, and Cytotoxicity in Macrophages in a Pulmonary Toxicity Model.
    Li R; Guiney LM; Chang CH; Mansukhani ND; Ji Z; Wang X; Liao YP; Jiang W; Sun B; Hersam MC; Nel AE; Xia T
    ACS Nano; 2018 Feb; 12(2):1390-1402. PubMed ID: 29328670
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Graphene oxide as a multi-functional p-dopant of transparent single-walled carbon nanotube films for optoelectronic devices.
    Han JT; Kim JS; Jo SB; Kim SH; Kim JS; Kang B; Jeong HJ; Jeong SY; Lee GW; Cho K
    Nanoscale; 2012 Dec; 4(24):7735-42. PubMed ID: 23135484
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cells take up and recover from protein-stabilized single-wall carbon nanotubes with two distinct rates.
    Holt BD; Dahl KN; Islam MF
    ACS Nano; 2012 Apr; 6(4):3481-90. PubMed ID: 22458848
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Toxicity of multi-walled carbon nanotubes, graphene oxide, and reduced graphene oxide to zebrafish embryos.
    Liu XT; Mu XY; Wu XL; Meng LX; Guan WB; Ma YQ; Sun H; Wang CJ; Li XF
    Biomed Environ Sci; 2014 Sep; 27(9):676-83. PubMed ID: 25256857
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide.
    Zhou M; Zhai Y; Dong S
    Anal Chem; 2009 Jul; 81(14):5603-13. PubMed ID: 19522529
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Graphene Oxide Nanosheets for Localized Hyperthermia-Physicochemical Characterization, Biocompatibility, and Induction of Tumor Cell Death.
    Podolska MJ; Barras A; Alexiou C; Frey B; Gaipl U; Boukherroub R; Szunerits S; Janko C; Muñoz LE
    Cells; 2020 Mar; 9(3):. PubMed ID: 32209981
    [TBL] [Abstract][Full Text] [Related]  

  • 54. PDLLA honeycomb-like scaffolds with a high loading of superhydrophilic graphene/multi-walled carbon nanotubes promote osteoblast in vitro functions and guided in vivo bone regeneration.
    Silva E; Vasconcellos LMR; Rodrigues BVM; Dos Santos DM; Campana-Filho SP; Marciano FR; Webster TJ; Lobo AO
    Mater Sci Eng C Mater Biol Appl; 2017 Apr; 73():31-39. PubMed ID: 28183613
    [TBL] [Abstract][Full Text] [Related]  

  • 55. In vitro evaluation of cytotoxicity of engineered carbon nanotubes in selected human cell lines.
    Hu X; Cook S; Wang P; Hwang HM; Liu X; Williams QL
    Sci Total Environ; 2010 Mar; 408(8):1812-7. PubMed ID: 20167353
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Physical properties of single-wall carbon nanotubes in cell culture and their dispersal due to alveolar epithelial cell response.
    Fujita K; Fukuda M; Endoh S; Kato H; Maru J; Nakamura A; Uchino K; Shinohara N; Obara S; Nagano R; Horie M; Kinugasa S; Hashimoto H; Kishimoto A
    Toxicol Mech Methods; 2013 Oct; 23(8):598-609. PubMed ID: 23742690
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Facile synthesis of the necklace-like graphene oxide-multi-walled carbon nanotube nanohybrid and its application in electrochemical sensing of azithromycin.
    Zhang K; Lu L; Wen Y; Xu J; Duan X; Zhang L; Hu D; Nie T
    Anal Chim Acta; 2013 Jul; 787():50-6. PubMed ID: 23830420
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Graphene Nanomaterials: Synthesis, Biocompatibility, and Cytotoxicity.
    Liao C; Li Y; Tjong SC
    Int J Mol Sci; 2018 Nov; 19(11):. PubMed ID: 30424535
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Structural disruption increases toxicity of graphene nanoribbons.
    Mullick Chowdhury S; Dasgupta S; McElroy AE; Sitharaman B
    J Appl Toxicol; 2014 Nov; 34(11):1235-46. PubMed ID: 25224919
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Electrochemical behavior of caffeic acid at single-walled carbon nanotube:graphite-based electrode.
    Moghaddam AB; Ganjali MR; Dinarvand R; Norouzi P; Saboury AA; Moosavi-Movahedi AA
    Biophys Chem; 2007 Jun; 128(1):30-7. PubMed ID: 17389147
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.