These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
365 related articles for article (PubMed ID: 29710875)
21. Multi-GPU implementation of a VMAT treatment plan optimization algorithm. Tian Z; Peng F; Folkerts M; Tan J; Jia X; Jiang SB Med Phys; 2015 Jun; 42(6):2841-52. PubMed ID: 26127037 [TBL] [Abstract][Full Text] [Related]
22. FUX-Sim: Implementation of a fast universal simulation/reconstruction framework for X-ray systems. Abella M; Serrano E; Garcia-Blas J; García I; de Molina C; Carretero J; Desco M PLoS One; 2017; 12(7):e0180363. PubMed ID: 28692677 [TBL] [Abstract][Full Text] [Related]
23. Advancements in Algorithms and Neuromorphic Hardware for Spiking Neural Networks. Javanshir A; Nguyen TT; Mahmud MAP; Kouzani AZ Neural Comput; 2022 May; 34(6):1289-1328. PubMed ID: 35534005 [TBL] [Abstract][Full Text] [Related]
24. FPGA implementation of a stochastic neural network for monotonic pseudo-Boolean optimization. Grossi G; Pedersini F Neural Netw; 2008 Aug; 21(6):872-9. PubMed ID: 18684590 [TBL] [Abstract][Full Text] [Related]
25. Design of a Low-Power Embedded System Based on a SoC-FPGA and the Honeybee Search Algorithm for Real-Time Video Tracking. Soubervielle-Montalvo C; Perez-Cham OE; Puente C; Gonzalez-Galvan EJ; Olague G; Aguirre-Salado CA; Cuevas-Tello JC; Ontanon-Garcia LJ Sensors (Basel); 2022 Feb; 22(3):. PubMed ID: 35162025 [TBL] [Abstract][Full Text] [Related]
26. A FPGA-Based, Granularity-Variable Neuromorphic Processor and Its Application in a MIMO Real-Time Control System. Zhang Z; Ma C; Zhu R Sensors (Basel); 2017 Aug; 17(9):. PubMed ID: 28832522 [TBL] [Abstract][Full Text] [Related]
27. Quantization-Aware NN Layers with High-throughput FPGA Implementation for Edge AI. Pistellato M; Bergamasco F; Bigaglia G; Gasparetto A; Albarelli A; Boschetti M; Passerone R Sensors (Basel); 2023 May; 23(10):. PubMed ID: 37430583 [TBL] [Abstract][Full Text] [Related]
28. A Novel Automate Python Edge-to-Edge: From Automated Generation on Cloud to User Application Deployment on Edge of Deep Neural Networks for Low Power IoT Systems FPGA-Based Acceleration. Belabed T; Ramos Gomes da Silva V; Quenon A; Valderamma C; Souani C Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577258 [TBL] [Abstract][Full Text] [Related]
29. Machine learning algorithms for FPGA Implementation in biomedical engineering applications: A review. Altman MB; Wan W; Hosseini AS; Arabi Nowdeh S; Alizadeh M Heliyon; 2024 Feb; 10(4):e26652. PubMed ID: 38434008 [TBL] [Abstract][Full Text] [Related]
30. High performance computing for deformable image registration: towards a new paradigm in adaptive radiotherapy. Samant SS; Xia J; Muyan-Ozcelik P; Owens JD Med Phys; 2008 Aug; 35(8):3546-53. PubMed ID: 18777915 [TBL] [Abstract][Full Text] [Related]
31. An FPGA hardware/software co-design towards evolvable spiking neural networks for robotics application. Johnston SP; Prasad G; Maguire L; McGinnity TM Int J Neural Syst; 2010 Dec; 20(6):447-61. PubMed ID: 21117269 [TBL] [Abstract][Full Text] [Related]
32. Field Programmable Gate Arrays for Enhancing the Speed and Energy Efficiency of Quantum Dynamics Simulations. Rodrı Guez-Borbón JM; Kalantar A; Yamijala SSRKC; Oviedo MB; Najjar W; Wong BM J Chem Theory Comput; 2020 Apr; 16(4):2085-2098. PubMed ID: 32216276 [TBL] [Abstract][Full Text] [Related]
34. An evaluation of multiple feed-forward networks on GPUs. Lopes N; Ribeiro B Int J Neural Syst; 2011 Feb; 21(1):31-47. PubMed ID: 21243729 [TBL] [Abstract][Full Text] [Related]
35. FPGA architecture based on OpenCL for studying the acoustic backscattering by an immersed tube. Hadji M; Elhanaoui A; Skouri R; Agounad S Heliyon; 2024 Feb; 10(4):e25987. PubMed ID: 38420406 [TBL] [Abstract][Full Text] [Related]
36. Acceleration of spiking neural network based pattern recognition on NVIDIA graphics processors. Han B; Taha TM Appl Opt; 2010 Apr; 49(10):B83-91. PubMed ID: 20357844 [TBL] [Abstract][Full Text] [Related]
37. Hardware Implementations of a Deep Learning Approach to Optimal Configuration of Reconfigurable Intelligence Surfaces. Martín-Martín A; Padial-Allué R; Castillo E; Parrilla L; Parellada-Serrano I; Morán A; García A Sensors (Basel); 2024 Jan; 24(3):. PubMed ID: 38339618 [TBL] [Abstract][Full Text] [Related]
38. CPU-GPU hybrid accelerating the Zuker algorithm for RNA secondary structure prediction applications. Lei G; Dou Y; Wan W; Xia F; Li R; Ma M; Zou D BMC Genomics; 2012; 13 Suppl 1(Suppl 1):S14. PubMed ID: 22369626 [TBL] [Abstract][Full Text] [Related]
39. FPGA-based hardware accelerator for SENSE (a parallel MR image reconstruction method). Inam O; Basit A; Qureshi M; Omer H Comput Biol Med; 2020 Feb; 117():103598. PubMed ID: 32072979 [TBL] [Abstract][Full Text] [Related]
40. A configurable simulation environment for the efficient simulation of large-scale spiking neural networks on graphics processors. Nageswaran JM; Dutt N; Krichmar JL; Nicolau A; Veidenbaum AV Neural Netw; 2009; 22(5-6):791-800. PubMed ID: 19615853 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]