These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
96 related articles for article (PubMed ID: 29711209)
1. A Method for High-Throughput Screening of Enantioselective Catalysts. Reetz MT; Becker MH; Klein HW; Stöckigt D Angew Chem Int Ed Engl; 1999 Jun; 38(12):1758-1761. PubMed ID: 29711209 [TBL] [Abstract][Full Text] [Related]
2. Combinatorial and Evolution-Based Methods in the Creation of Enantioselective Catalysts. Reetz MT Angew Chem Int Ed Engl; 2001 Jan; 40(2):284-310. PubMed ID: 11180317 [TBL] [Abstract][Full Text] [Related]
3. Combinatorial chemistry approach to chiral catalyst engineering and screening: rational design and serendipity. Ding K; Du H; Yuan Y; Long J Chemistry; 2004 Jun; 10(12):2873-84. PubMed ID: 15214068 [TBL] [Abstract][Full Text] [Related]
4. Mass Spectrometric Back Reaction Screening of Quasi-Enantiomeric Products as a Mechanistic Tool. Isenegger PG; Pfaltz A Chem Rec; 2016 Dec; 16(6):2534-2543. PubMed ID: 27417883 [TBL] [Abstract][Full Text] [Related]
5. Optical rotation per refractive index unit, or enantiomeric (e) factor, for screening enantioselective catalysts through asymmetric activation or carbohydrates. Angelaud R; Matsumoto Y; Korenaga T; Kudo K; Senda M; Mikami K Chirality; 2000 Jun; 12(5-6):544-7. PubMed ID: 10824185 [TBL] [Abstract][Full Text] [Related]
6. A high-throughput screening protocol for fast evaluation of enantioselective catalysts. Wolf C; Hawes PA J Org Chem; 2002 Apr; 67(8):2727-9. PubMed ID: 11950330 [TBL] [Abstract][Full Text] [Related]
7. Ultra-high-throughput mapping of the chemical space of asymmetric catalysis enables accelerated reaction discovery. Nie W; Wan Q; Sun J; Chen M; Gao M; Chen S Nat Commun; 2023 Oct; 14(1):6671. PubMed ID: 37865636 [TBL] [Abstract][Full Text] [Related]
8. Engineering Catalysts for Enantioselective Addition of Diethylzinc to Aldehydes with Racemic Amino Alcohols: Nonlinear Effects in Asymmetric Deactivation of Racemic Catalysts. Long J; Ding K Angew Chem Int Ed Engl; 2001 Feb; 40(3):544-547. PubMed ID: 29712026 [TBL] [Abstract][Full Text] [Related]
9. Prediction of enantiomeric excess in a combinatorial library of catalytic enantioselective reactions. Aires-de-Sousa J; Gasteiger J J Comb Chem; 2005; 7(2):298-301. PubMed ID: 15762759 [TBL] [Abstract][Full Text] [Related]
10. The diarylprolinol silyl ether system: a general organocatalyst. Jensen KL; Dickmeiss G; Jiang H; Albrecht L; Jørgensen KA Acc Chem Res; 2012 Feb; 45(2):248-64. PubMed ID: 21848275 [TBL] [Abstract][Full Text] [Related]
11. Recent progress in asymmetric bifunctional catalysis using multimetallic systems. Shibasaki M; Kanai M; Matsunaga S; Kumagai N Acc Chem Res; 2009 Aug; 42(8):1117-27. PubMed ID: 19435320 [TBL] [Abstract][Full Text] [Related]
12. Enantioselective Hydrolysis of Amino Acid Esters Promoted by Bis(β-cyclodextrin) Copper Complexes. Xue SS; Zhao M; Ke ZF; Cheng BC; Su H; Cao Q; Cao ZK; Wang J; Ji LN; Mao ZW Sci Rep; 2016 Feb; 6():22080. PubMed ID: 26916830 [TBL] [Abstract][Full Text] [Related]
13. Exploiting nanospace for asymmetric catalysis: confinement of immobilized, single-site chiral catalysts enhances enantioselectivity. Thomas JM; Raja R Acc Chem Res; 2008 Jun; 41(6):708-20. PubMed ID: 18505277 [TBL] [Abstract][Full Text] [Related]
14. A practical high-throughput screening system for enantioselectivity by using FTIR spectroscopy. Tielmann P; Boese M; Luft M; Reetz MT Chemistry; 2003 Aug; 9(16):3882-7. PubMed ID: 12916113 [TBL] [Abstract][Full Text] [Related]
15. Synergistic effect of binary component ligands in chiral catalyst library engineering for enantioselective reactions. Ding K Chem Commun (Camb); 2008 Feb; (8):909-21. PubMed ID: 18283341 [TBL] [Abstract][Full Text] [Related]
16. Insight into the mechanism of the asymmetric ring-opening aminolysis of 4,4-dimethyl-3,5,8-trioxabicyclo[5.1.0]octane catalyzed by titanium/BINOLate/water system: evidence for the Ti(BINOLate)2-bearing active catalyst entities and the role of water. Bao H; Zhou J; Wang Z; Guo Y; You T; Ding K J Am Chem Soc; 2008 Aug; 130(31):10116-27. PubMed ID: 18616252 [TBL] [Abstract][Full Text] [Related]
17. By-design enantioselective self-amplification based on non-covalent product-catalyst interactions. Storch G; Trapp O Nat Chem; 2017 Feb; 9(2):179-187. PubMed ID: 28282051 [TBL] [Abstract][Full Text] [Related]
18. Determination of enantioselectivity and enantiomeric excess by mass spectrometry in the absence of chiral chromatographic separation: an overview. Piovesana S; Samperi R; Laganà A; Bella M Chemistry; 2013 Aug; 19(35):11478-94. PubMed ID: 23940005 [TBL] [Abstract][Full Text] [Related]
19. Highly enantioselective dynamic kinetic resolution and desymmetrization processes by cyclocondensation of chiral aminoalcohols with racemic or prochiral delta-oxoacid derivatives. Amat M; Bassas O; Pericàs MA; Pastó M; Bosch J Chem Commun (Camb); 2005 Mar; (10):1327-9. PubMed ID: 15742067 [TBL] [Abstract][Full Text] [Related]
20. Asymmetric Morita-Baylis-Hillman Reaction: Catalyst Development and Mechanistic Insights Based on Mass Spectrometric Back-Reaction Screening. Isenegger PG; Bächle F; Pfaltz A Chemistry; 2016 Dec; 22(49):17595-17599. PubMed ID: 27775188 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]